Loading…

Advancements in acne detection: application of the CenterNet network in smart dermatology

Acne detection is critical in dermatology, focusing on quality control of acne imagery, precise segmentation, and grading. Traditional research has been limited, typically concentrating on singular aspects of acne detection. We propose a multi-task acne detection method, employing a CenterNet-based...

Full description

Saved in:
Bibliographic Details
Published in:Frontiers in medicine 2024-03, Vol.11, p.1344314-1344314
Main Authors: Zhang, Daojun, Li, Huanyu, Shi, Jiajia, Shen, Yue, Zhu, Ling, Chen, Nianze, Wei, Zikun, Lv, Junwei, Chen, Yu, Hao, Fei
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c418t-1fbdb283a137999771ae1afdd62a11188d9041cbe027056b68d3daa66ae997da3
container_end_page 1344314
container_issue
container_start_page 1344314
container_title Frontiers in medicine
container_volume 11
creator Zhang, Daojun
Li, Huanyu
Shi, Jiajia
Shen, Yue
Zhu, Ling
Chen, Nianze
Wei, Zikun
Lv, Junwei
Chen, Yu
Hao, Fei
description Acne detection is critical in dermatology, focusing on quality control of acne imagery, precise segmentation, and grading. Traditional research has been limited, typically concentrating on singular aspects of acne detection. We propose a multi-task acne detection method, employing a CenterNet-based training paradigm to develop an advanced detection system. This system collects acne images via smartphones and features multi-task capabilities for detecting image quality and identifying various acne types. It differentiates between noninflammatory acne, papules, pustules, nodules, and provides detailed delineation for cysts and post-acne scars. The implementation of this multi-task learning-based framework in clinical diagnostics demonstrated an 83% accuracy in lesion categorization, surpassing ResNet18 models by 12%. Furthermore, it achieved a 76% precision in lesion stratification, outperforming dermatologists by 16%. Our framework represents a advancement in acne detection, offering a comprehensive tool for classification, localization, counting, and precise segmentation. It not only enhances the accuracy of remote acne lesion identification by doctors but also clarifies grading logic and criteria, facilitating easier grading judgments.
doi_str_mv 10.3389/fmed.2024.1344314
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_935b1e38b15b45f190f93b731a735890</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_935b1e38b15b45f190f93b731a735890</doaj_id><sourcerecordid>3035541045</sourcerecordid><originalsourceid>FETCH-LOGICAL-c418t-1fbdb283a137999771ae1afdd62a11188d9041cbe027056b68d3daa66ae997da3</originalsourceid><addsrcrecordid>eNpVkc1u1DAUhSMEolXpA7BBWbKZwTc3Tmw2qBoVqFTBBiRYWTf2zTQliQfbU9S3x2GGql3575zPxz5F8RrEGlHpd_3Ebl2Jql4D1jVC_aw4rSrdrJRUP54_mp8U5zHeCiEAK1kDvixOUEndtEqdFj8v3B3NlieeUyyHuSQ7c-k4sU2Dn9-XtNuNg6VlUfq-TDdcbrKWwxdO5czpjw-_Fl-cKKRsDBMlP_rt_aviRU9j5PPjeFZ8_3j5bfN5df3109Xm4npla1BpBX3nukohAbZa67YFYqDeuaYiAFDKaVGD7VhUrZBN1yiHjqhpiLPaEZ4VVweu83RrdmHIQe6Np8H82_Bha3KywY5sNMoOGFUHsqtlD1r0GrsWgVqUSovM-nBg7fZd_l6bHxpofAJ9ejIPN2br7wyAEFg1OhPeHgnB_95zTGYaouVxpJn9PhoUKHMJopZZCgepDT7GwP3DPSDMUrFZKjZLxeZYcfa8eRzwwfG_UPwLFOijgQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3035541045</pqid></control><display><type>article</type><title>Advancements in acne detection: application of the CenterNet network in smart dermatology</title><source>NCBI_PubMed Central(免费)</source><creator>Zhang, Daojun ; Li, Huanyu ; Shi, Jiajia ; Shen, Yue ; Zhu, Ling ; Chen, Nianze ; Wei, Zikun ; Lv, Junwei ; Chen, Yu ; Hao, Fei</creator><creatorcontrib>Zhang, Daojun ; Li, Huanyu ; Shi, Jiajia ; Shen, Yue ; Zhu, Ling ; Chen, Nianze ; Wei, Zikun ; Lv, Junwei ; Chen, Yu ; Hao, Fei</creatorcontrib><description>Acne detection is critical in dermatology, focusing on quality control of acne imagery, precise segmentation, and grading. Traditional research has been limited, typically concentrating on singular aspects of acne detection. We propose a multi-task acne detection method, employing a CenterNet-based training paradigm to develop an advanced detection system. This system collects acne images via smartphones and features multi-task capabilities for detecting image quality and identifying various acne types. It differentiates between noninflammatory acne, papules, pustules, nodules, and provides detailed delineation for cysts and post-acne scars. The implementation of this multi-task learning-based framework in clinical diagnostics demonstrated an 83% accuracy in lesion categorization, surpassing ResNet18 models by 12%. Furthermore, it achieved a 76% precision in lesion stratification, outperforming dermatologists by 16%. Our framework represents a advancement in acne detection, offering a comprehensive tool for classification, localization, counting, and precise segmentation. It not only enhances the accuracy of remote acne lesion identification by doctors but also clarifies grading logic and criteria, facilitating easier grading judgments.</description><identifier>ISSN: 2296-858X</identifier><identifier>EISSN: 2296-858X</identifier><identifier>DOI: 10.3389/fmed.2024.1344314</identifier><identifier>PMID: 38596788</identifier><language>eng</language><publisher>Switzerland: Frontiers Media S.A</publisher><subject>acne detection ; CenterNet network ; deep learning in healthcare ; dermatology ; image detection ; interpretability ; Medicine</subject><ispartof>Frontiers in medicine, 2024-03, Vol.11, p.1344314-1344314</ispartof><rights>Copyright © 2024 Zhang, Li, Shi, Shen, Zhu, Chen, Wei, Lv, Chen and Hao.</rights><rights>Copyright © 2024 Zhang, Li, Shi, Shen, Zhu, Chen, Wei, Lv, Chen and Hao. 2024 Zhang, Li, Shi, Shen, Zhu, Chen, Wei, Lv, Chen and Hao</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c418t-1fbdb283a137999771ae1afdd62a11188d9041cbe027056b68d3daa66ae997da3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11003269/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11003269/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38596788$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Daojun</creatorcontrib><creatorcontrib>Li, Huanyu</creatorcontrib><creatorcontrib>Shi, Jiajia</creatorcontrib><creatorcontrib>Shen, Yue</creatorcontrib><creatorcontrib>Zhu, Ling</creatorcontrib><creatorcontrib>Chen, Nianze</creatorcontrib><creatorcontrib>Wei, Zikun</creatorcontrib><creatorcontrib>Lv, Junwei</creatorcontrib><creatorcontrib>Chen, Yu</creatorcontrib><creatorcontrib>Hao, Fei</creatorcontrib><title>Advancements in acne detection: application of the CenterNet network in smart dermatology</title><title>Frontiers in medicine</title><addtitle>Front Med (Lausanne)</addtitle><description>Acne detection is critical in dermatology, focusing on quality control of acne imagery, precise segmentation, and grading. Traditional research has been limited, typically concentrating on singular aspects of acne detection. We propose a multi-task acne detection method, employing a CenterNet-based training paradigm to develop an advanced detection system. This system collects acne images via smartphones and features multi-task capabilities for detecting image quality and identifying various acne types. It differentiates between noninflammatory acne, papules, pustules, nodules, and provides detailed delineation for cysts and post-acne scars. The implementation of this multi-task learning-based framework in clinical diagnostics demonstrated an 83% accuracy in lesion categorization, surpassing ResNet18 models by 12%. Furthermore, it achieved a 76% precision in lesion stratification, outperforming dermatologists by 16%. Our framework represents a advancement in acne detection, offering a comprehensive tool for classification, localization, counting, and precise segmentation. It not only enhances the accuracy of remote acne lesion identification by doctors but also clarifies grading logic and criteria, facilitating easier grading judgments.</description><subject>acne detection</subject><subject>CenterNet network</subject><subject>deep learning in healthcare</subject><subject>dermatology</subject><subject>image detection</subject><subject>interpretability</subject><subject>Medicine</subject><issn>2296-858X</issn><issn>2296-858X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNpVkc1u1DAUhSMEolXpA7BBWbKZwTc3Tmw2qBoVqFTBBiRYWTf2zTQliQfbU9S3x2GGql3575zPxz5F8RrEGlHpd_3Ebl2Jql4D1jVC_aw4rSrdrJRUP54_mp8U5zHeCiEAK1kDvixOUEndtEqdFj8v3B3NlieeUyyHuSQ7c-k4sU2Dn9-XtNuNg6VlUfq-TDdcbrKWwxdO5czpjw-_Fl-cKKRsDBMlP_rt_aviRU9j5PPjeFZ8_3j5bfN5df3109Xm4npla1BpBX3nukohAbZa67YFYqDeuaYiAFDKaVGD7VhUrZBN1yiHjqhpiLPaEZ4VVweu83RrdmHIQe6Np8H82_Bha3KywY5sNMoOGFUHsqtlD1r0GrsWgVqUSovM-nBg7fZd_l6bHxpofAJ9ejIPN2br7wyAEFg1OhPeHgnB_95zTGYaouVxpJn9PhoUKHMJopZZCgepDT7GwP3DPSDMUrFZKjZLxeZYcfa8eRzwwfG_UPwLFOijgQ</recordid><startdate>20240325</startdate><enddate>20240325</enddate><creator>Zhang, Daojun</creator><creator>Li, Huanyu</creator><creator>Shi, Jiajia</creator><creator>Shen, Yue</creator><creator>Zhu, Ling</creator><creator>Chen, Nianze</creator><creator>Wei, Zikun</creator><creator>Lv, Junwei</creator><creator>Chen, Yu</creator><creator>Hao, Fei</creator><general>Frontiers Media S.A</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20240325</creationdate><title>Advancements in acne detection: application of the CenterNet network in smart dermatology</title><author>Zhang, Daojun ; Li, Huanyu ; Shi, Jiajia ; Shen, Yue ; Zhu, Ling ; Chen, Nianze ; Wei, Zikun ; Lv, Junwei ; Chen, Yu ; Hao, Fei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c418t-1fbdb283a137999771ae1afdd62a11188d9041cbe027056b68d3daa66ae997da3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>acne detection</topic><topic>CenterNet network</topic><topic>deep learning in healthcare</topic><topic>dermatology</topic><topic>image detection</topic><topic>interpretability</topic><topic>Medicine</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Daojun</creatorcontrib><creatorcontrib>Li, Huanyu</creatorcontrib><creatorcontrib>Shi, Jiajia</creatorcontrib><creatorcontrib>Shen, Yue</creatorcontrib><creatorcontrib>Zhu, Ling</creatorcontrib><creatorcontrib>Chen, Nianze</creatorcontrib><creatorcontrib>Wei, Zikun</creatorcontrib><creatorcontrib>Lv, Junwei</creatorcontrib><creatorcontrib>Chen, Yu</creatorcontrib><creatorcontrib>Hao, Fei</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Frontiers in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Daojun</au><au>Li, Huanyu</au><au>Shi, Jiajia</au><au>Shen, Yue</au><au>Zhu, Ling</au><au>Chen, Nianze</au><au>Wei, Zikun</au><au>Lv, Junwei</au><au>Chen, Yu</au><au>Hao, Fei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Advancements in acne detection: application of the CenterNet network in smart dermatology</atitle><jtitle>Frontiers in medicine</jtitle><addtitle>Front Med (Lausanne)</addtitle><date>2024-03-25</date><risdate>2024</risdate><volume>11</volume><spage>1344314</spage><epage>1344314</epage><pages>1344314-1344314</pages><issn>2296-858X</issn><eissn>2296-858X</eissn><abstract>Acne detection is critical in dermatology, focusing on quality control of acne imagery, precise segmentation, and grading. Traditional research has been limited, typically concentrating on singular aspects of acne detection. We propose a multi-task acne detection method, employing a CenterNet-based training paradigm to develop an advanced detection system. This system collects acne images via smartphones and features multi-task capabilities for detecting image quality and identifying various acne types. It differentiates between noninflammatory acne, papules, pustules, nodules, and provides detailed delineation for cysts and post-acne scars. The implementation of this multi-task learning-based framework in clinical diagnostics demonstrated an 83% accuracy in lesion categorization, surpassing ResNet18 models by 12%. Furthermore, it achieved a 76% precision in lesion stratification, outperforming dermatologists by 16%. Our framework represents a advancement in acne detection, offering a comprehensive tool for classification, localization, counting, and precise segmentation. It not only enhances the accuracy of remote acne lesion identification by doctors but also clarifies grading logic and criteria, facilitating easier grading judgments.</abstract><cop>Switzerland</cop><pub>Frontiers Media S.A</pub><pmid>38596788</pmid><doi>10.3389/fmed.2024.1344314</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2296-858X
ispartof Frontiers in medicine, 2024-03, Vol.11, p.1344314-1344314
issn 2296-858X
2296-858X
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_935b1e38b15b45f190f93b731a735890
source NCBI_PubMed Central(免费)
subjects acne detection
CenterNet network
deep learning in healthcare
dermatology
image detection
interpretability
Medicine
title Advancements in acne detection: application of the CenterNet network in smart dermatology
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T08%3A12%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Advancements%20in%20acne%20detection:%20application%20of%20the%20CenterNet%20network%20in%20smart%20dermatology&rft.jtitle=Frontiers%20in%20medicine&rft.au=Zhang,%20Daojun&rft.date=2024-03-25&rft.volume=11&rft.spage=1344314&rft.epage=1344314&rft.pages=1344314-1344314&rft.issn=2296-858X&rft.eissn=2296-858X&rft_id=info:doi/10.3389/fmed.2024.1344314&rft_dat=%3Cproquest_doaj_%3E3035541045%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c418t-1fbdb283a137999771ae1afdd62a11188d9041cbe027056b68d3daa66ae997da3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3035541045&rft_id=info:pmid/38596788&rfr_iscdi=true