Loading…
Advancements in acne detection: application of the CenterNet network in smart dermatology
Acne detection is critical in dermatology, focusing on quality control of acne imagery, precise segmentation, and grading. Traditional research has been limited, typically concentrating on singular aspects of acne detection. We propose a multi-task acne detection method, employing a CenterNet-based...
Saved in:
Published in: | Frontiers in medicine 2024-03, Vol.11, p.1344314-1344314 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c418t-1fbdb283a137999771ae1afdd62a11188d9041cbe027056b68d3daa66ae997da3 |
container_end_page | 1344314 |
container_issue | |
container_start_page | 1344314 |
container_title | Frontiers in medicine |
container_volume | 11 |
creator | Zhang, Daojun Li, Huanyu Shi, Jiajia Shen, Yue Zhu, Ling Chen, Nianze Wei, Zikun Lv, Junwei Chen, Yu Hao, Fei |
description | Acne detection is critical in dermatology, focusing on quality control of acne imagery, precise segmentation, and grading. Traditional research has been limited, typically concentrating on singular aspects of acne detection.
We propose a multi-task acne detection method, employing a CenterNet-based training paradigm to develop an advanced detection system. This system collects acne images via smartphones and features multi-task capabilities for detecting image quality and identifying various acne types. It differentiates between noninflammatory acne, papules, pustules, nodules, and provides detailed delineation for cysts and post-acne scars.
The implementation of this multi-task learning-based framework in clinical diagnostics demonstrated an 83% accuracy in lesion categorization, surpassing ResNet18 models by 12%. Furthermore, it achieved a 76% precision in lesion stratification, outperforming dermatologists by 16%.
Our framework represents a advancement in acne detection, offering a comprehensive tool for classification, localization, counting, and precise segmentation. It not only enhances the accuracy of remote acne lesion identification by doctors but also clarifies grading logic and criteria, facilitating easier grading judgments. |
doi_str_mv | 10.3389/fmed.2024.1344314 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_935b1e38b15b45f190f93b731a735890</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_935b1e38b15b45f190f93b731a735890</doaj_id><sourcerecordid>3035541045</sourcerecordid><originalsourceid>FETCH-LOGICAL-c418t-1fbdb283a137999771ae1afdd62a11188d9041cbe027056b68d3daa66ae997da3</originalsourceid><addsrcrecordid>eNpVkc1u1DAUhSMEolXpA7BBWbKZwTc3Tmw2qBoVqFTBBiRYWTf2zTQliQfbU9S3x2GGql3575zPxz5F8RrEGlHpd_3Ebl2Jql4D1jVC_aw4rSrdrJRUP54_mp8U5zHeCiEAK1kDvixOUEndtEqdFj8v3B3NlieeUyyHuSQ7c-k4sU2Dn9-XtNuNg6VlUfq-TDdcbrKWwxdO5czpjw-_Fl-cKKRsDBMlP_rt_aviRU9j5PPjeFZ8_3j5bfN5df3109Xm4npla1BpBX3nukohAbZa67YFYqDeuaYiAFDKaVGD7VhUrZBN1yiHjqhpiLPaEZ4VVweu83RrdmHIQe6Np8H82_Bha3KywY5sNMoOGFUHsqtlD1r0GrsWgVqUSovM-nBg7fZd_l6bHxpofAJ9ejIPN2br7wyAEFg1OhPeHgnB_95zTGYaouVxpJn9PhoUKHMJopZZCgepDT7GwP3DPSDMUrFZKjZLxeZYcfa8eRzwwfG_UPwLFOijgQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3035541045</pqid></control><display><type>article</type><title>Advancements in acne detection: application of the CenterNet network in smart dermatology</title><source>NCBI_PubMed Central(免费)</source><creator>Zhang, Daojun ; Li, Huanyu ; Shi, Jiajia ; Shen, Yue ; Zhu, Ling ; Chen, Nianze ; Wei, Zikun ; Lv, Junwei ; Chen, Yu ; Hao, Fei</creator><creatorcontrib>Zhang, Daojun ; Li, Huanyu ; Shi, Jiajia ; Shen, Yue ; Zhu, Ling ; Chen, Nianze ; Wei, Zikun ; Lv, Junwei ; Chen, Yu ; Hao, Fei</creatorcontrib><description>Acne detection is critical in dermatology, focusing on quality control of acne imagery, precise segmentation, and grading. Traditional research has been limited, typically concentrating on singular aspects of acne detection.
We propose a multi-task acne detection method, employing a CenterNet-based training paradigm to develop an advanced detection system. This system collects acne images via smartphones and features multi-task capabilities for detecting image quality and identifying various acne types. It differentiates between noninflammatory acne, papules, pustules, nodules, and provides detailed delineation for cysts and post-acne scars.
The implementation of this multi-task learning-based framework in clinical diagnostics demonstrated an 83% accuracy in lesion categorization, surpassing ResNet18 models by 12%. Furthermore, it achieved a 76% precision in lesion stratification, outperforming dermatologists by 16%.
Our framework represents a advancement in acne detection, offering a comprehensive tool for classification, localization, counting, and precise segmentation. It not only enhances the accuracy of remote acne lesion identification by doctors but also clarifies grading logic and criteria, facilitating easier grading judgments.</description><identifier>ISSN: 2296-858X</identifier><identifier>EISSN: 2296-858X</identifier><identifier>DOI: 10.3389/fmed.2024.1344314</identifier><identifier>PMID: 38596788</identifier><language>eng</language><publisher>Switzerland: Frontiers Media S.A</publisher><subject>acne detection ; CenterNet network ; deep learning in healthcare ; dermatology ; image detection ; interpretability ; Medicine</subject><ispartof>Frontiers in medicine, 2024-03, Vol.11, p.1344314-1344314</ispartof><rights>Copyright © 2024 Zhang, Li, Shi, Shen, Zhu, Chen, Wei, Lv, Chen and Hao.</rights><rights>Copyright © 2024 Zhang, Li, Shi, Shen, Zhu, Chen, Wei, Lv, Chen and Hao. 2024 Zhang, Li, Shi, Shen, Zhu, Chen, Wei, Lv, Chen and Hao</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c418t-1fbdb283a137999771ae1afdd62a11188d9041cbe027056b68d3daa66ae997da3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11003269/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11003269/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38596788$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Daojun</creatorcontrib><creatorcontrib>Li, Huanyu</creatorcontrib><creatorcontrib>Shi, Jiajia</creatorcontrib><creatorcontrib>Shen, Yue</creatorcontrib><creatorcontrib>Zhu, Ling</creatorcontrib><creatorcontrib>Chen, Nianze</creatorcontrib><creatorcontrib>Wei, Zikun</creatorcontrib><creatorcontrib>Lv, Junwei</creatorcontrib><creatorcontrib>Chen, Yu</creatorcontrib><creatorcontrib>Hao, Fei</creatorcontrib><title>Advancements in acne detection: application of the CenterNet network in smart dermatology</title><title>Frontiers in medicine</title><addtitle>Front Med (Lausanne)</addtitle><description>Acne detection is critical in dermatology, focusing on quality control of acne imagery, precise segmentation, and grading. Traditional research has been limited, typically concentrating on singular aspects of acne detection.
We propose a multi-task acne detection method, employing a CenterNet-based training paradigm to develop an advanced detection system. This system collects acne images via smartphones and features multi-task capabilities for detecting image quality and identifying various acne types. It differentiates between noninflammatory acne, papules, pustules, nodules, and provides detailed delineation for cysts and post-acne scars.
The implementation of this multi-task learning-based framework in clinical diagnostics demonstrated an 83% accuracy in lesion categorization, surpassing ResNet18 models by 12%. Furthermore, it achieved a 76% precision in lesion stratification, outperforming dermatologists by 16%.
Our framework represents a advancement in acne detection, offering a comprehensive tool for classification, localization, counting, and precise segmentation. It not only enhances the accuracy of remote acne lesion identification by doctors but also clarifies grading logic and criteria, facilitating easier grading judgments.</description><subject>acne detection</subject><subject>CenterNet network</subject><subject>deep learning in healthcare</subject><subject>dermatology</subject><subject>image detection</subject><subject>interpretability</subject><subject>Medicine</subject><issn>2296-858X</issn><issn>2296-858X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNpVkc1u1DAUhSMEolXpA7BBWbKZwTc3Tmw2qBoVqFTBBiRYWTf2zTQliQfbU9S3x2GGql3575zPxz5F8RrEGlHpd_3Ebl2Jql4D1jVC_aw4rSrdrJRUP54_mp8U5zHeCiEAK1kDvixOUEndtEqdFj8v3B3NlieeUyyHuSQ7c-k4sU2Dn9-XtNuNg6VlUfq-TDdcbrKWwxdO5czpjw-_Fl-cKKRsDBMlP_rt_aviRU9j5PPjeFZ8_3j5bfN5df3109Xm4npla1BpBX3nukohAbZa67YFYqDeuaYiAFDKaVGD7VhUrZBN1yiHjqhpiLPaEZ4VVweu83RrdmHIQe6Np8H82_Bha3KywY5sNMoOGFUHsqtlD1r0GrsWgVqUSovM-nBg7fZd_l6bHxpofAJ9ejIPN2br7wyAEFg1OhPeHgnB_95zTGYaouVxpJn9PhoUKHMJopZZCgepDT7GwP3DPSDMUrFZKjZLxeZYcfa8eRzwwfG_UPwLFOijgQ</recordid><startdate>20240325</startdate><enddate>20240325</enddate><creator>Zhang, Daojun</creator><creator>Li, Huanyu</creator><creator>Shi, Jiajia</creator><creator>Shen, Yue</creator><creator>Zhu, Ling</creator><creator>Chen, Nianze</creator><creator>Wei, Zikun</creator><creator>Lv, Junwei</creator><creator>Chen, Yu</creator><creator>Hao, Fei</creator><general>Frontiers Media S.A</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20240325</creationdate><title>Advancements in acne detection: application of the CenterNet network in smart dermatology</title><author>Zhang, Daojun ; Li, Huanyu ; Shi, Jiajia ; Shen, Yue ; Zhu, Ling ; Chen, Nianze ; Wei, Zikun ; Lv, Junwei ; Chen, Yu ; Hao, Fei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c418t-1fbdb283a137999771ae1afdd62a11188d9041cbe027056b68d3daa66ae997da3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>acne detection</topic><topic>CenterNet network</topic><topic>deep learning in healthcare</topic><topic>dermatology</topic><topic>image detection</topic><topic>interpretability</topic><topic>Medicine</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Daojun</creatorcontrib><creatorcontrib>Li, Huanyu</creatorcontrib><creatorcontrib>Shi, Jiajia</creatorcontrib><creatorcontrib>Shen, Yue</creatorcontrib><creatorcontrib>Zhu, Ling</creatorcontrib><creatorcontrib>Chen, Nianze</creatorcontrib><creatorcontrib>Wei, Zikun</creatorcontrib><creatorcontrib>Lv, Junwei</creatorcontrib><creatorcontrib>Chen, Yu</creatorcontrib><creatorcontrib>Hao, Fei</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Frontiers in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Daojun</au><au>Li, Huanyu</au><au>Shi, Jiajia</au><au>Shen, Yue</au><au>Zhu, Ling</au><au>Chen, Nianze</au><au>Wei, Zikun</au><au>Lv, Junwei</au><au>Chen, Yu</au><au>Hao, Fei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Advancements in acne detection: application of the CenterNet network in smart dermatology</atitle><jtitle>Frontiers in medicine</jtitle><addtitle>Front Med (Lausanne)</addtitle><date>2024-03-25</date><risdate>2024</risdate><volume>11</volume><spage>1344314</spage><epage>1344314</epage><pages>1344314-1344314</pages><issn>2296-858X</issn><eissn>2296-858X</eissn><abstract>Acne detection is critical in dermatology, focusing on quality control of acne imagery, precise segmentation, and grading. Traditional research has been limited, typically concentrating on singular aspects of acne detection.
We propose a multi-task acne detection method, employing a CenterNet-based training paradigm to develop an advanced detection system. This system collects acne images via smartphones and features multi-task capabilities for detecting image quality and identifying various acne types. It differentiates between noninflammatory acne, papules, pustules, nodules, and provides detailed delineation for cysts and post-acne scars.
The implementation of this multi-task learning-based framework in clinical diagnostics demonstrated an 83% accuracy in lesion categorization, surpassing ResNet18 models by 12%. Furthermore, it achieved a 76% precision in lesion stratification, outperforming dermatologists by 16%.
Our framework represents a advancement in acne detection, offering a comprehensive tool for classification, localization, counting, and precise segmentation. It not only enhances the accuracy of remote acne lesion identification by doctors but also clarifies grading logic and criteria, facilitating easier grading judgments.</abstract><cop>Switzerland</cop><pub>Frontiers Media S.A</pub><pmid>38596788</pmid><doi>10.3389/fmed.2024.1344314</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2296-858X |
ispartof | Frontiers in medicine, 2024-03, Vol.11, p.1344314-1344314 |
issn | 2296-858X 2296-858X |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_935b1e38b15b45f190f93b731a735890 |
source | NCBI_PubMed Central(免费) |
subjects | acne detection CenterNet network deep learning in healthcare dermatology image detection interpretability Medicine |
title | Advancements in acne detection: application of the CenterNet network in smart dermatology |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T08%3A12%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Advancements%20in%20acne%20detection:%20application%20of%20the%20CenterNet%20network%20in%20smart%20dermatology&rft.jtitle=Frontiers%20in%20medicine&rft.au=Zhang,%20Daojun&rft.date=2024-03-25&rft.volume=11&rft.spage=1344314&rft.epage=1344314&rft.pages=1344314-1344314&rft.issn=2296-858X&rft.eissn=2296-858X&rft_id=info:doi/10.3389/fmed.2024.1344314&rft_dat=%3Cproquest_doaj_%3E3035541045%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c418t-1fbdb283a137999771ae1afdd62a11188d9041cbe027056b68d3daa66ae997da3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3035541045&rft_id=info:pmid/38596788&rfr_iscdi=true |