Loading…

Suppression of Clothing-Induced Acoustic Attenuation in Robotic Auscultation

For patients who are often embarrassed and uncomfortable when exposing their breasts and having them touched by physicians of different genders during auscultation, we are developing a robotic system that performs auscultation over clothing. As the technical issue, the sound obtained through the clo...

Full description

Saved in:
Bibliographic Details
Published in:Sensors (Basel, Switzerland) Switzerland), 2023-02, Vol.23 (4), p.2260
Main Authors: Tsumura, Ryosuke, Umezawa, Akihiro, Morishima, Yuko, Iwata, Hiroyasu, Yoshinaka, Kiyoshi
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:For patients who are often embarrassed and uncomfortable when exposing their breasts and having them touched by physicians of different genders during auscultation, we are developing a robotic system that performs auscultation over clothing. As the technical issue, the sound obtained through the clothing is often attenuated. This study aims to investigate clothing-induced acoustic attenuation and develop a suppression method for it. Because the attenuation is due to the loss of energy as sound propagates through a medium with viscosity, we hypothesized that the attenuation is improved by compressing clothing and shortening the sound propagation distance. Then, the amplitude spectrum of the heart sound was obtained over clothes of different thicknesses and materials in a phantom study and human trial at varying contact forces with a developed passive-actuated end-effector. Our results demonstrate the feasibility of the attenuation suppression method by applying an optimum contact force, which varied according to the clothing condition. In the phantom experiments, the attenuation rate was improved maximumly by 48% when applying the optimal contact force (1 N). In human trials, the attenuation rate was under the acceptable attenuation (40%) when applying the optimal contact force in all combinations in each subject. The proposed method promises the potential of robotic auscultation toward eliminating gender bias.
ISSN:1424-8220
1424-8220
DOI:10.3390/s23042260