Loading…

Development and evaluation of a clinical decision support system for early diagnosis of acute appendicitis

The most frequent reason for individuals experiencing abdominal discomfort to be referred to emergency departments of hospitals is acute appendicitis, and the most frequent emergency surgery performed is an appendectomy. The purpose of this study was to design and develop an intelligent clinical dec...

Full description

Saved in:
Bibliographic Details
Published in:Scientific reports 2023-11, Vol.13 (1), p.19703-19703, Article 19703
Main Authors: Shahmoradi, Leila, Safdari, Reza, Mirhosseini, Mir Mikail, Rezayi, Sorayya, Javaherzadeh, Mojtaba
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The most frequent reason for individuals experiencing abdominal discomfort to be referred to emergency departments of hospitals is acute appendicitis, and the most frequent emergency surgery performed is an appendectomy. The purpose of this study was to design and develop an intelligent clinical decision support system for the timely and accurate diagnosis of acute appendicitis. The number of participants which is equal to 181 was chosen as the sample size for developing and evaluating neural networks. The information was gathered from the medical files of patients who underwent appendicectomies at Shahid Modarres Hospital as well as from the findings of their appendix samples' pathological tests. The diagnostic outcomes were then ascertained by the development and comparison of a Multilayer Perceptron network (MLP) and a Support Vector Machine (SVM) system in the MATLAB environment. The SVM algorithm functioned as the central processing unit in the Clinical Decision Support System (CDSS) that was built. The intelligent appendicitis diagnostic system was subsequently developed utilizing the Java programming language. Technical evaluation and system usability testing were both done as part of the software evaluation process. Comparing the output of the optimized artificial neural network of the SVM with the pathology result showed that the network's sensitivity, specificity, and accuracy were 91.7%, 96.2%, and 95%, respectively, in diagnosing acute appendicitis. Based on the existing standards and the opinions of general surgeons, and also comparing the results with the diagnostic accuracy of general surgeons, findings indicated the proper functioning of the network for the diagnosis of acute appendicitis. The use of this system in medical centers is useful for purposes such as timely diagnosis and prevention of negative appendectomy, reducing patient hospital stays and treatment costs, and improving the patient referral system.
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-023-46721-9