Loading…
Spatially Enriched Paralog Rearrangements Argue Functionally Diverse Ribosomes Arise during Cold Acclimation in Arabidopsis
Ribosome biogenesis is essential for plants to successfully acclimate to low temperature. Without dedicated steps supervising the 60S large subunits (LSUs) maturation in the cytosol, e.g., Rei-like (REIL) factors, plants fail to accumulate dry weight and fail to grow at suboptimal low temperatures....
Saved in:
Published in: | International journal of molecular sciences 2021-06, Vol.22 (11), p.6160 |
---|---|
Main Authors: | , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c474t-3e61f45db543aa34caf273f50341d9685d2976a7b12a6432b39cb2081ffba2223 |
---|---|
cites | cdi_FETCH-LOGICAL-c474t-3e61f45db543aa34caf273f50341d9685d2976a7b12a6432b39cb2081ffba2223 |
container_end_page | |
container_issue | 11 |
container_start_page | 6160 |
container_title | International journal of molecular sciences |
container_volume | 22 |
creator | Martinez-Seidel, Federico Beine-Golovchuk, Olga Hsieh, Yin-Chen Eshraky, Kheloud El Gorka, Michal Cheong, Bo-Eng Jimenez-Posada, Erika V Walther, Dirk Skirycz, Aleksandra Roessner, Ute Kopka, Joachim Pereira Firmino, Alexandre Augusto |
description | Ribosome biogenesis is essential for plants to successfully acclimate to low temperature. Without dedicated steps supervising the 60S large subunits (LSUs) maturation in the cytosol, e.g., Rei-like (REIL) factors, plants fail to accumulate dry weight and fail to grow at suboptimal low temperatures. Around REIL, the final 60S cytosolic maturation steps include proofreading and assembly of functional ribosomal centers such as the polypeptide exit tunnel and the P-Stalk, respectively. In consequence, these ribosomal substructures and their assembly, especially during low temperatures, might be changed and provoke the need for dedicated quality controls. To test this, we blocked ribosome maturation during cold acclimation using two independent
double mutant genotypes and tested changes in their ribosomal proteomes. Additionally, we normalized our mutant datasets using as a blank the cold responsiveness of a wild-type Arabidopsis genotype. This allowed us to neglect any
-specific effects that may happen due to the presence or absence of the factor during LSU cytosolic maturation, thus allowing us to test for cold-induced changes that happen in the early nucleolar biogenesis. As a result, we report that cold acclimation triggers a reprogramming in the structural ribosomal proteome. The reprogramming alters the abundance of specific RP families and/or paralogs in non-translational LSU and translational polysome fractions, a phenomenon known as substoichiometry. Next, we tested whether the cold-substoichiometry was spatially confined to specific regions of the complex. In terms of RP proteoforms, we report that remodeling of ribosomes after a cold stimulus is significantly constrained to the polypeptide exit tunnel (PET), i.e., REIL factor binding and functional site. In terms of RP transcripts, cold acclimation induces changes in RP families or paralogs that are significantly constrained to the P-Stalk and the ribosomal head. The three modulated substructures represent possible targets of mechanisms that may constrain translation by controlled ribosome heterogeneity. We propose that non-random ribosome heterogeneity controlled by specialized biogenesis mechanisms may contribute to a preferential or ultimately even rigorous selection of transcripts needed for rapid proteome shifts and successful acclimation. |
doi_str_mv | 10.3390/ijms22116160 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_93964f0468ab4df2a44527d8e23cc4d3</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_93964f0468ab4df2a44527d8e23cc4d3</doaj_id><sourcerecordid>2548401749</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-3e61f45db543aa34caf273f50341d9685d2976a7b12a6432b39cb2081ffba2223</originalsourceid><addsrcrecordid>eNpVks1v1DAQxSMEoqVw4ww5cmDBHk-c5IK0WlqoVAlU4GxNbCd1ldiLnVSq-Ofxdttqe_LXm5-fnl5RvOXskxAt--yupwTAueSSPSuOOQKsGJP184P9UfEqpWvGQEDVviyOBAJjiPK4-PdrS7OjcbwtT310-sqa8idFGsNQXlqKkfxgJ-vnVK7jsNjybPF6dsHfjXx1NzYmW166LqQw2Z3I5bNZovNDuQmjKddaj26i3UzpfBZQ50zYJpdeFy96GpN9c7-eFH_OTn9vvq8ufnw736wvVhprnFfCSt5jZboKBZFATT3Uoq-YQG5a2VQG2lpS3XEgiQI60eoOWMP7viMAECfF-Z5rAl2rbcxu4q0K5NTdRYiDojg7PVrVilZiz1A21KHpgRArqE1jQWiNRmTWlz1ru3STNTonk8N6An364t2VGsKNaoBxLngGvN8DdE5qdl75EElxxkStAJnc2f1w_0UMfxebZjW5pO04krdhSQoqbJDxGtss_fgACylF2z8a4Uzt2qEO25Hl7w7NP4of6iD-A4kItjk</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2548401749</pqid></control><display><type>article</type><title>Spatially Enriched Paralog Rearrangements Argue Functionally Diverse Ribosomes Arise during Cold Acclimation in Arabidopsis</title><source>NORA - Norwegian Open Research Archives</source><source>PMC (PubMed Central)</source><source>Publicly Available Content (ProQuest)</source><creator>Martinez-Seidel, Federico ; Beine-Golovchuk, Olga ; Hsieh, Yin-Chen ; Eshraky, Kheloud El ; Gorka, Michal ; Cheong, Bo-Eng ; Jimenez-Posada, Erika V ; Walther, Dirk ; Skirycz, Aleksandra ; Roessner, Ute ; Kopka, Joachim ; Pereira Firmino, Alexandre Augusto</creator><creatorcontrib>Martinez-Seidel, Federico ; Beine-Golovchuk, Olga ; Hsieh, Yin-Chen ; Eshraky, Kheloud El ; Gorka, Michal ; Cheong, Bo-Eng ; Jimenez-Posada, Erika V ; Walther, Dirk ; Skirycz, Aleksandra ; Roessner, Ute ; Kopka, Joachim ; Pereira Firmino, Alexandre Augusto</creatorcontrib><description>Ribosome biogenesis is essential for plants to successfully acclimate to low temperature. Without dedicated steps supervising the 60S large subunits (LSUs) maturation in the cytosol, e.g., Rei-like (REIL) factors, plants fail to accumulate dry weight and fail to grow at suboptimal low temperatures. Around REIL, the final 60S cytosolic maturation steps include proofreading and assembly of functional ribosomal centers such as the polypeptide exit tunnel and the P-Stalk, respectively. In consequence, these ribosomal substructures and their assembly, especially during low temperatures, might be changed and provoke the need for dedicated quality controls. To test this, we blocked ribosome maturation during cold acclimation using two independent
double mutant genotypes and tested changes in their ribosomal proteomes. Additionally, we normalized our mutant datasets using as a blank the cold responsiveness of a wild-type Arabidopsis genotype. This allowed us to neglect any
-specific effects that may happen due to the presence or absence of the factor during LSU cytosolic maturation, thus allowing us to test for cold-induced changes that happen in the early nucleolar biogenesis. As a result, we report that cold acclimation triggers a reprogramming in the structural ribosomal proteome. The reprogramming alters the abundance of specific RP families and/or paralogs in non-translational LSU and translational polysome fractions, a phenomenon known as substoichiometry. Next, we tested whether the cold-substoichiometry was spatially confined to specific regions of the complex. In terms of RP proteoforms, we report that remodeling of ribosomes after a cold stimulus is significantly constrained to the polypeptide exit tunnel (PET), i.e., REIL factor binding and functional site. In terms of RP transcripts, cold acclimation induces changes in RP families or paralogs that are significantly constrained to the P-Stalk and the ribosomal head. The three modulated substructures represent possible targets of mechanisms that may constrain translation by controlled ribosome heterogeneity. We propose that non-random ribosome heterogeneity controlled by specialized biogenesis mechanisms may contribute to a preferential or ultimately even rigorous selection of transcripts needed for rapid proteome shifts and successful acclimation.</description><identifier>ISSN: 1422-0067</identifier><identifier>ISSN: 1661-6596</identifier><identifier>EISSN: 1422-0067</identifier><identifier>DOI: 10.3390/ijms22116160</identifier><identifier>PMID: 34200446</identifier><language>eng</language><publisher>Switzerland: MDPI</publisher><subject>Acclimatization ; Arabidopsis - genetics ; Arabidopsis - metabolism ; Arabidopsis Proteins - genetics ; Arabidopsis Proteins - metabolism ; Cold Temperature ; functional heterogeneity ; paralog subfunctionalization ; Proteome - analysis ; Proteome - metabolism ; remodeling ; ribosomal code ; Ribosomal Proteins - genetics ; Ribosomal Proteins - metabolism ; ribosome biogenesis ; ribosome-associated proteins ; Ribosomes - genetics ; Ribosomes - metabolism</subject><ispartof>International journal of molecular sciences, 2021-06, Vol.22 (11), p.6160</ispartof><rights>info:eu-repo/semantics/openAccess</rights><rights>2021 by the authors. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-3e61f45db543aa34caf273f50341d9685d2976a7b12a6432b39cb2081ffba2223</citedby><cites>FETCH-LOGICAL-c474t-3e61f45db543aa34caf273f50341d9685d2976a7b12a6432b39cb2081ffba2223</cites><orcidid>0000-0002-5576-1726 ; 0000-0002-1410-2492 ; 0000-0001-6852-5362 ; 0000-0002-6482-2615 ; 0000-0002-5755-9265 ; 0000-0001-9675-4883</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8201131/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8201131/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,26567,27924,27925,37013,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34200446$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Martinez-Seidel, Federico</creatorcontrib><creatorcontrib>Beine-Golovchuk, Olga</creatorcontrib><creatorcontrib>Hsieh, Yin-Chen</creatorcontrib><creatorcontrib>Eshraky, Kheloud El</creatorcontrib><creatorcontrib>Gorka, Michal</creatorcontrib><creatorcontrib>Cheong, Bo-Eng</creatorcontrib><creatorcontrib>Jimenez-Posada, Erika V</creatorcontrib><creatorcontrib>Walther, Dirk</creatorcontrib><creatorcontrib>Skirycz, Aleksandra</creatorcontrib><creatorcontrib>Roessner, Ute</creatorcontrib><creatorcontrib>Kopka, Joachim</creatorcontrib><creatorcontrib>Pereira Firmino, Alexandre Augusto</creatorcontrib><title>Spatially Enriched Paralog Rearrangements Argue Functionally Diverse Ribosomes Arise during Cold Acclimation in Arabidopsis</title><title>International journal of molecular sciences</title><addtitle>Int J Mol Sci</addtitle><description>Ribosome biogenesis is essential for plants to successfully acclimate to low temperature. Without dedicated steps supervising the 60S large subunits (LSUs) maturation in the cytosol, e.g., Rei-like (REIL) factors, plants fail to accumulate dry weight and fail to grow at suboptimal low temperatures. Around REIL, the final 60S cytosolic maturation steps include proofreading and assembly of functional ribosomal centers such as the polypeptide exit tunnel and the P-Stalk, respectively. In consequence, these ribosomal substructures and their assembly, especially during low temperatures, might be changed and provoke the need for dedicated quality controls. To test this, we blocked ribosome maturation during cold acclimation using two independent
double mutant genotypes and tested changes in their ribosomal proteomes. Additionally, we normalized our mutant datasets using as a blank the cold responsiveness of a wild-type Arabidopsis genotype. This allowed us to neglect any
-specific effects that may happen due to the presence or absence of the factor during LSU cytosolic maturation, thus allowing us to test for cold-induced changes that happen in the early nucleolar biogenesis. As a result, we report that cold acclimation triggers a reprogramming in the structural ribosomal proteome. The reprogramming alters the abundance of specific RP families and/or paralogs in non-translational LSU and translational polysome fractions, a phenomenon known as substoichiometry. Next, we tested whether the cold-substoichiometry was spatially confined to specific regions of the complex. In terms of RP proteoforms, we report that remodeling of ribosomes after a cold stimulus is significantly constrained to the polypeptide exit tunnel (PET), i.e., REIL factor binding and functional site. In terms of RP transcripts, cold acclimation induces changes in RP families or paralogs that are significantly constrained to the P-Stalk and the ribosomal head. The three modulated substructures represent possible targets of mechanisms that may constrain translation by controlled ribosome heterogeneity. We propose that non-random ribosome heterogeneity controlled by specialized biogenesis mechanisms may contribute to a preferential or ultimately even rigorous selection of transcripts needed for rapid proteome shifts and successful acclimation.</description><subject>Acclimatization</subject><subject>Arabidopsis - genetics</subject><subject>Arabidopsis - metabolism</subject><subject>Arabidopsis Proteins - genetics</subject><subject>Arabidopsis Proteins - metabolism</subject><subject>Cold Temperature</subject><subject>functional heterogeneity</subject><subject>paralog subfunctionalization</subject><subject>Proteome - analysis</subject><subject>Proteome - metabolism</subject><subject>remodeling</subject><subject>ribosomal code</subject><subject>Ribosomal Proteins - genetics</subject><subject>Ribosomal Proteins - metabolism</subject><subject>ribosome biogenesis</subject><subject>ribosome-associated proteins</subject><subject>Ribosomes - genetics</subject><subject>Ribosomes - metabolism</subject><issn>1422-0067</issn><issn>1661-6596</issn><issn>1422-0067</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>3HK</sourceid><sourceid>DOA</sourceid><recordid>eNpVks1v1DAQxSMEoqVw4ww5cmDBHk-c5IK0WlqoVAlU4GxNbCd1ldiLnVSq-Ofxdttqe_LXm5-fnl5RvOXskxAt--yupwTAueSSPSuOOQKsGJP184P9UfEqpWvGQEDVviyOBAJjiPK4-PdrS7OjcbwtT310-sqa8idFGsNQXlqKkfxgJ-vnVK7jsNjybPF6dsHfjXx1NzYmW166LqQw2Z3I5bNZovNDuQmjKddaj26i3UzpfBZQ50zYJpdeFy96GpN9c7-eFH_OTn9vvq8ufnw736wvVhprnFfCSt5jZboKBZFATT3Uoq-YQG5a2VQG2lpS3XEgiQI60eoOWMP7viMAECfF-Z5rAl2rbcxu4q0K5NTdRYiDojg7PVrVilZiz1A21KHpgRArqE1jQWiNRmTWlz1ru3STNTonk8N6An364t2VGsKNaoBxLngGvN8DdE5qdl75EElxxkStAJnc2f1w_0UMfxebZjW5pO04krdhSQoqbJDxGtss_fgACylF2z8a4Uzt2qEO25Hl7w7NP4of6iD-A4kItjk</recordid><startdate>20210607</startdate><enddate>20210607</enddate><creator>Martinez-Seidel, Federico</creator><creator>Beine-Golovchuk, Olga</creator><creator>Hsieh, Yin-Chen</creator><creator>Eshraky, Kheloud El</creator><creator>Gorka, Michal</creator><creator>Cheong, Bo-Eng</creator><creator>Jimenez-Posada, Erika V</creator><creator>Walther, Dirk</creator><creator>Skirycz, Aleksandra</creator><creator>Roessner, Ute</creator><creator>Kopka, Joachim</creator><creator>Pereira Firmino, Alexandre Augusto</creator><general>MDPI</general><general>MDPI AG</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>3HK</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-5576-1726</orcidid><orcidid>https://orcid.org/0000-0002-1410-2492</orcidid><orcidid>https://orcid.org/0000-0001-6852-5362</orcidid><orcidid>https://orcid.org/0000-0002-6482-2615</orcidid><orcidid>https://orcid.org/0000-0002-5755-9265</orcidid><orcidid>https://orcid.org/0000-0001-9675-4883</orcidid></search><sort><creationdate>20210607</creationdate><title>Spatially Enriched Paralog Rearrangements Argue Functionally Diverse Ribosomes Arise during Cold Acclimation in Arabidopsis</title><author>Martinez-Seidel, Federico ; Beine-Golovchuk, Olga ; Hsieh, Yin-Chen ; Eshraky, Kheloud El ; Gorka, Michal ; Cheong, Bo-Eng ; Jimenez-Posada, Erika V ; Walther, Dirk ; Skirycz, Aleksandra ; Roessner, Ute ; Kopka, Joachim ; Pereira Firmino, Alexandre Augusto</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-3e61f45db543aa34caf273f50341d9685d2976a7b12a6432b39cb2081ffba2223</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Acclimatization</topic><topic>Arabidopsis - genetics</topic><topic>Arabidopsis - metabolism</topic><topic>Arabidopsis Proteins - genetics</topic><topic>Arabidopsis Proteins - metabolism</topic><topic>Cold Temperature</topic><topic>functional heterogeneity</topic><topic>paralog subfunctionalization</topic><topic>Proteome - analysis</topic><topic>Proteome - metabolism</topic><topic>remodeling</topic><topic>ribosomal code</topic><topic>Ribosomal Proteins - genetics</topic><topic>Ribosomal Proteins - metabolism</topic><topic>ribosome biogenesis</topic><topic>ribosome-associated proteins</topic><topic>Ribosomes - genetics</topic><topic>Ribosomes - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Martinez-Seidel, Federico</creatorcontrib><creatorcontrib>Beine-Golovchuk, Olga</creatorcontrib><creatorcontrib>Hsieh, Yin-Chen</creatorcontrib><creatorcontrib>Eshraky, Kheloud El</creatorcontrib><creatorcontrib>Gorka, Michal</creatorcontrib><creatorcontrib>Cheong, Bo-Eng</creatorcontrib><creatorcontrib>Jimenez-Posada, Erika V</creatorcontrib><creatorcontrib>Walther, Dirk</creatorcontrib><creatorcontrib>Skirycz, Aleksandra</creatorcontrib><creatorcontrib>Roessner, Ute</creatorcontrib><creatorcontrib>Kopka, Joachim</creatorcontrib><creatorcontrib>Pereira Firmino, Alexandre Augusto</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>NORA - Norwegian Open Research Archives</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJÂ Directory of Open Access Journals</collection><jtitle>International journal of molecular sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Martinez-Seidel, Federico</au><au>Beine-Golovchuk, Olga</au><au>Hsieh, Yin-Chen</au><au>Eshraky, Kheloud El</au><au>Gorka, Michal</au><au>Cheong, Bo-Eng</au><au>Jimenez-Posada, Erika V</au><au>Walther, Dirk</au><au>Skirycz, Aleksandra</au><au>Roessner, Ute</au><au>Kopka, Joachim</au><au>Pereira Firmino, Alexandre Augusto</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spatially Enriched Paralog Rearrangements Argue Functionally Diverse Ribosomes Arise during Cold Acclimation in Arabidopsis</atitle><jtitle>International journal of molecular sciences</jtitle><addtitle>Int J Mol Sci</addtitle><date>2021-06-07</date><risdate>2021</risdate><volume>22</volume><issue>11</issue><spage>6160</spage><pages>6160-</pages><issn>1422-0067</issn><issn>1661-6596</issn><eissn>1422-0067</eissn><abstract>Ribosome biogenesis is essential for plants to successfully acclimate to low temperature. Without dedicated steps supervising the 60S large subunits (LSUs) maturation in the cytosol, e.g., Rei-like (REIL) factors, plants fail to accumulate dry weight and fail to grow at suboptimal low temperatures. Around REIL, the final 60S cytosolic maturation steps include proofreading and assembly of functional ribosomal centers such as the polypeptide exit tunnel and the P-Stalk, respectively. In consequence, these ribosomal substructures and their assembly, especially during low temperatures, might be changed and provoke the need for dedicated quality controls. To test this, we blocked ribosome maturation during cold acclimation using two independent
double mutant genotypes and tested changes in their ribosomal proteomes. Additionally, we normalized our mutant datasets using as a blank the cold responsiveness of a wild-type Arabidopsis genotype. This allowed us to neglect any
-specific effects that may happen due to the presence or absence of the factor during LSU cytosolic maturation, thus allowing us to test for cold-induced changes that happen in the early nucleolar biogenesis. As a result, we report that cold acclimation triggers a reprogramming in the structural ribosomal proteome. The reprogramming alters the abundance of specific RP families and/or paralogs in non-translational LSU and translational polysome fractions, a phenomenon known as substoichiometry. Next, we tested whether the cold-substoichiometry was spatially confined to specific regions of the complex. In terms of RP proteoforms, we report that remodeling of ribosomes after a cold stimulus is significantly constrained to the polypeptide exit tunnel (PET), i.e., REIL factor binding and functional site. In terms of RP transcripts, cold acclimation induces changes in RP families or paralogs that are significantly constrained to the P-Stalk and the ribosomal head. The three modulated substructures represent possible targets of mechanisms that may constrain translation by controlled ribosome heterogeneity. We propose that non-random ribosome heterogeneity controlled by specialized biogenesis mechanisms may contribute to a preferential or ultimately even rigorous selection of transcripts needed for rapid proteome shifts and successful acclimation.</abstract><cop>Switzerland</cop><pub>MDPI</pub><pmid>34200446</pmid><doi>10.3390/ijms22116160</doi><orcidid>https://orcid.org/0000-0002-5576-1726</orcidid><orcidid>https://orcid.org/0000-0002-1410-2492</orcidid><orcidid>https://orcid.org/0000-0001-6852-5362</orcidid><orcidid>https://orcid.org/0000-0002-6482-2615</orcidid><orcidid>https://orcid.org/0000-0002-5755-9265</orcidid><orcidid>https://orcid.org/0000-0001-9675-4883</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1422-0067 |
ispartof | International journal of molecular sciences, 2021-06, Vol.22 (11), p.6160 |
issn | 1422-0067 1661-6596 1422-0067 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_93964f0468ab4df2a44527d8e23cc4d3 |
source | NORA - Norwegian Open Research Archives; PMC (PubMed Central); Publicly Available Content (ProQuest) |
subjects | Acclimatization Arabidopsis - genetics Arabidopsis - metabolism Arabidopsis Proteins - genetics Arabidopsis Proteins - metabolism Cold Temperature functional heterogeneity paralog subfunctionalization Proteome - analysis Proteome - metabolism remodeling ribosomal code Ribosomal Proteins - genetics Ribosomal Proteins - metabolism ribosome biogenesis ribosome-associated proteins Ribosomes - genetics Ribosomes - metabolism |
title | Spatially Enriched Paralog Rearrangements Argue Functionally Diverse Ribosomes Arise during Cold Acclimation in Arabidopsis |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T20%3A40%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spatially%20Enriched%20Paralog%20Rearrangements%20Argue%20Functionally%20Diverse%20Ribosomes%20Arise%20during%20Cold%20Acclimation%20in%20Arabidopsis&rft.jtitle=International%20journal%20of%20molecular%20sciences&rft.au=Martinez-Seidel,%20Federico&rft.date=2021-06-07&rft.volume=22&rft.issue=11&rft.spage=6160&rft.pages=6160-&rft.issn=1422-0067&rft.eissn=1422-0067&rft_id=info:doi/10.3390/ijms22116160&rft_dat=%3Cproquest_doaj_%3E2548401749%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c474t-3e61f45db543aa34caf273f50341d9685d2976a7b12a6432b39cb2081ffba2223%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2548401749&rft_id=info:pmid/34200446&rfr_iscdi=true |