Loading…
Freezing of few nanometers water droplets
Water-ice transformation of few nm nanodroplets plays a critical role in nature including climate change, microphysics of clouds, survival mechanism of animals in cold environments, and a broad spectrum of technologies. In most of these scenarios, water-ice transformation occurs in a heterogenous mo...
Saved in:
Published in: | Nature communications 2021-11, Vol.12 (1), p.6973-8, Article 6973 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c540t-80b8130aa4589075313740325cf7cf0a743e9cd7f25d1cbe438720bf28e49b583 |
---|---|
cites | cdi_FETCH-LOGICAL-c540t-80b8130aa4589075313740325cf7cf0a743e9cd7f25d1cbe438720bf28e49b583 |
container_end_page | 8 |
container_issue | 1 |
container_start_page | 6973 |
container_title | Nature communications |
container_volume | 12 |
creator | Hakimian, Alireza Mohebinia, Mohammadjavad Nazari, Masoumeh Davoodabadi, Ali Nazifi, Sina Huang, Zixu Bao, Jiming Ghasemi, Hadi |
description | Water-ice transformation of few nm nanodroplets plays a critical role in nature including climate change, microphysics of clouds, survival mechanism of animals in cold environments, and a broad spectrum of technologies. In most of these scenarios, water-ice transformation occurs in a heterogenous mode where nanodroplets are in contact with another medium. Despite computational efforts, experimental probing of this transformation at few nm scales remains unresolved. Here, we report direct probing of water-ice transformation down to 2 nm scale and the length-scale dependence of transformation temperature through two independent metrologies. The transformation temperature shows a sharp length dependence in nanodroplets smaller than 10 nm and for 2 nm droplet, this temperature falls below the homogenous bulk nucleation limit. Contrary to nucleation on curved rigid solid surfaces, ice formation on soft interfaces (omnipresent in nature) can deform the interface leading to suppression of ice nucleation. For soft interfaces, ice nucleation temperature depends on surface modulus. Considering the interfacial deformation, the findings are in good agreement with predictions of classical nucleation theory. This understanding contributes to a greater knowledge of natural phenomena and rational design of anti-icing systems for aviation, wind energy and infrastructures and even cryopreservation systems.
Ice nucleation in confined geometries is a ubiquitous phenomenon, but difficult to characterize. Here the authors investigate experimentally the freezing of water nanodroplets surrounded by octane in nanopores down to 2 nm, and demonstrate that the soft curved oil-water interface suppresses heterogeneous ice nucleation, which occurs at a lower temperature than homogenous bulk nucleation. |
doi_str_mv | 10.1038/s41467-021-27346-w |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_93b3228db4fa47b8b73e22baf9b74b50</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_93b3228db4fa47b8b73e22baf9b74b50</doaj_id><sourcerecordid>2604656763</sourcerecordid><originalsourceid>FETCH-LOGICAL-c540t-80b8130aa4589075313740325cf7cf0a743e9cd7f25d1cbe438720bf28e49b583</originalsourceid><addsrcrecordid>eNp9kU1P5DAMhqMVaEHAH-CwqsSJQyGJ3Sa9ICG0fEhIe1nOUdI6sx3NNEPSYcT-egLl84IvtuzXjxO9jB0KfiI46NOEAmtVcilKqQDrcvOD7UqOohRKwtaneocdpDTnOaARGvEn2wHUqBXwXXZ8GYn-98OsCL7wtCkGO4QljRRTsbE5FV0MqwWNaZ9te7tIdPCa99jd5e-_F9fl7Z-rm4vz27KtkI-l5k4L4NZipRuuKhCgkIOsWq9az61CoKbtlJdVJ1pHCFpJ7rzUhI2rNOyxm4nbBTs3q9gvbXw0wfbmpRHizNg49u2CTAMOpNSdQ29ROe0UkJTO-sYpdBXPrLOJtVq7JXUtDWO0iy_Qr5Oh_2dm4cHoGmRTqww4egXEcL-mNJp5WMch_9_ImmNd1aqGrJKTqo0hpUj-_YLg5tktM7llslvmxS2zyUu_Pr_tfeXNmyyASZDyaJhR_Lj9DfYJxT6fAQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2604656763</pqid></control><display><type>article</type><title>Freezing of few nanometers water droplets</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>Nature Journals</source><source>PubMed Central</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Hakimian, Alireza ; Mohebinia, Mohammadjavad ; Nazari, Masoumeh ; Davoodabadi, Ali ; Nazifi, Sina ; Huang, Zixu ; Bao, Jiming ; Ghasemi, Hadi</creator><creatorcontrib>Hakimian, Alireza ; Mohebinia, Mohammadjavad ; Nazari, Masoumeh ; Davoodabadi, Ali ; Nazifi, Sina ; Huang, Zixu ; Bao, Jiming ; Ghasemi, Hadi</creatorcontrib><description>Water-ice transformation of few nm nanodroplets plays a critical role in nature including climate change, microphysics of clouds, survival mechanism of animals in cold environments, and a broad spectrum of technologies. In most of these scenarios, water-ice transformation occurs in a heterogenous mode where nanodroplets are in contact with another medium. Despite computational efforts, experimental probing of this transformation at few nm scales remains unresolved. Here, we report direct probing of water-ice transformation down to 2 nm scale and the length-scale dependence of transformation temperature through two independent metrologies. The transformation temperature shows a sharp length dependence in nanodroplets smaller than 10 nm and for 2 nm droplet, this temperature falls below the homogenous bulk nucleation limit. Contrary to nucleation on curved rigid solid surfaces, ice formation on soft interfaces (omnipresent in nature) can deform the interface leading to suppression of ice nucleation. For soft interfaces, ice nucleation temperature depends on surface modulus. Considering the interfacial deformation, the findings are in good agreement with predictions of classical nucleation theory. This understanding contributes to a greater knowledge of natural phenomena and rational design of anti-icing systems for aviation, wind energy and infrastructures and even cryopreservation systems.
Ice nucleation in confined geometries is a ubiquitous phenomenon, but difficult to characterize. Here the authors investigate experimentally the freezing of water nanodroplets surrounded by octane in nanopores down to 2 nm, and demonstrate that the soft curved oil-water interface suppresses heterogeneous ice nucleation, which occurs at a lower temperature than homogenous bulk nucleation.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/s41467-021-27346-w</identifier><identifier>PMID: 34848730</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>142/136 ; 147/3 ; 639/638/440/94 ; 639/766/94 ; 639/925/357 ; Climate change ; Clouds ; Computer applications ; Cryopreservation ; Deformation ; Deicing ; Droplets ; Freezing ; Humanities and Social Sciences ; Ice formation ; Ice nucleation ; Interfaces ; Membranes ; Microphysics ; multidisciplinary ; Nucleation ; Science ; Science (multidisciplinary) ; Solid surfaces ; Spectrum analysis ; Surfactants ; Temperature dependence ; Transformation temperature ; Water drops ; Wind power</subject><ispartof>Nature communications, 2021-11, Vol.12 (1), p.6973-8, Article 6973</ispartof><rights>The Author(s) 2021</rights><rights>2021. The Author(s).</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c540t-80b8130aa4589075313740325cf7cf0a743e9cd7f25d1cbe438720bf28e49b583</citedby><cites>FETCH-LOGICAL-c540t-80b8130aa4589075313740325cf7cf0a743e9cd7f25d1cbe438720bf28e49b583</cites><orcidid>0000-0001-7252-2631 ; 0000-0002-0554-4248</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2604656763/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2604656763?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34848730$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hakimian, Alireza</creatorcontrib><creatorcontrib>Mohebinia, Mohammadjavad</creatorcontrib><creatorcontrib>Nazari, Masoumeh</creatorcontrib><creatorcontrib>Davoodabadi, Ali</creatorcontrib><creatorcontrib>Nazifi, Sina</creatorcontrib><creatorcontrib>Huang, Zixu</creatorcontrib><creatorcontrib>Bao, Jiming</creatorcontrib><creatorcontrib>Ghasemi, Hadi</creatorcontrib><title>Freezing of few nanometers water droplets</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>Nat Commun</addtitle><description>Water-ice transformation of few nm nanodroplets plays a critical role in nature including climate change, microphysics of clouds, survival mechanism of animals in cold environments, and a broad spectrum of technologies. In most of these scenarios, water-ice transformation occurs in a heterogenous mode where nanodroplets are in contact with another medium. Despite computational efforts, experimental probing of this transformation at few nm scales remains unresolved. Here, we report direct probing of water-ice transformation down to 2 nm scale and the length-scale dependence of transformation temperature through two independent metrologies. The transformation temperature shows a sharp length dependence in nanodroplets smaller than 10 nm and for 2 nm droplet, this temperature falls below the homogenous bulk nucleation limit. Contrary to nucleation on curved rigid solid surfaces, ice formation on soft interfaces (omnipresent in nature) can deform the interface leading to suppression of ice nucleation. For soft interfaces, ice nucleation temperature depends on surface modulus. Considering the interfacial deformation, the findings are in good agreement with predictions of classical nucleation theory. This understanding contributes to a greater knowledge of natural phenomena and rational design of anti-icing systems for aviation, wind energy and infrastructures and even cryopreservation systems.
Ice nucleation in confined geometries is a ubiquitous phenomenon, but difficult to characterize. Here the authors investigate experimentally the freezing of water nanodroplets surrounded by octane in nanopores down to 2 nm, and demonstrate that the soft curved oil-water interface suppresses heterogeneous ice nucleation, which occurs at a lower temperature than homogenous bulk nucleation.</description><subject>142/136</subject><subject>147/3</subject><subject>639/638/440/94</subject><subject>639/766/94</subject><subject>639/925/357</subject><subject>Climate change</subject><subject>Clouds</subject><subject>Computer applications</subject><subject>Cryopreservation</subject><subject>Deformation</subject><subject>Deicing</subject><subject>Droplets</subject><subject>Freezing</subject><subject>Humanities and Social Sciences</subject><subject>Ice formation</subject><subject>Ice nucleation</subject><subject>Interfaces</subject><subject>Membranes</subject><subject>Microphysics</subject><subject>multidisciplinary</subject><subject>Nucleation</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Solid surfaces</subject><subject>Spectrum analysis</subject><subject>Surfactants</subject><subject>Temperature dependence</subject><subject>Transformation temperature</subject><subject>Water drops</subject><subject>Wind power</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kU1P5DAMhqMVaEHAH-CwqsSJQyGJ3Sa9ICG0fEhIe1nOUdI6sx3NNEPSYcT-egLl84IvtuzXjxO9jB0KfiI46NOEAmtVcilKqQDrcvOD7UqOohRKwtaneocdpDTnOaARGvEn2wHUqBXwXXZ8GYn-98OsCL7wtCkGO4QljRRTsbE5FV0MqwWNaZ9te7tIdPCa99jd5e-_F9fl7Z-rm4vz27KtkI-l5k4L4NZipRuuKhCgkIOsWq9az61CoKbtlJdVJ1pHCFpJ7rzUhI2rNOyxm4nbBTs3q9gvbXw0wfbmpRHizNg49u2CTAMOpNSdQ29ROe0UkJTO-sYpdBXPrLOJtVq7JXUtDWO0iy_Qr5Oh_2dm4cHoGmRTqww4egXEcL-mNJp5WMch_9_ImmNd1aqGrJKTqo0hpUj-_YLg5tktM7llslvmxS2zyUu_Pr_tfeXNmyyASZDyaJhR_Lj9DfYJxT6fAQ</recordid><startdate>20211130</startdate><enddate>20211130</enddate><creator>Hakimian, Alireza</creator><creator>Mohebinia, Mohammadjavad</creator><creator>Nazari, Masoumeh</creator><creator>Davoodabadi, Ali</creator><creator>Nazifi, Sina</creator><creator>Huang, Zixu</creator><creator>Bao, Jiming</creator><creator>Ghasemi, Hadi</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>SOI</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-7252-2631</orcidid><orcidid>https://orcid.org/0000-0002-0554-4248</orcidid></search><sort><creationdate>20211130</creationdate><title>Freezing of few nanometers water droplets</title><author>Hakimian, Alireza ; Mohebinia, Mohammadjavad ; Nazari, Masoumeh ; Davoodabadi, Ali ; Nazifi, Sina ; Huang, Zixu ; Bao, Jiming ; Ghasemi, Hadi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c540t-80b8130aa4589075313740325cf7cf0a743e9cd7f25d1cbe438720bf28e49b583</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>142/136</topic><topic>147/3</topic><topic>639/638/440/94</topic><topic>639/766/94</topic><topic>639/925/357</topic><topic>Climate change</topic><topic>Clouds</topic><topic>Computer applications</topic><topic>Cryopreservation</topic><topic>Deformation</topic><topic>Deicing</topic><topic>Droplets</topic><topic>Freezing</topic><topic>Humanities and Social Sciences</topic><topic>Ice formation</topic><topic>Ice nucleation</topic><topic>Interfaces</topic><topic>Membranes</topic><topic>Microphysics</topic><topic>multidisciplinary</topic><topic>Nucleation</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Solid surfaces</topic><topic>Spectrum analysis</topic><topic>Surfactants</topic><topic>Temperature dependence</topic><topic>Transformation temperature</topic><topic>Water drops</topic><topic>Wind power</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hakimian, Alireza</creatorcontrib><creatorcontrib>Mohebinia, Mohammadjavad</creatorcontrib><creatorcontrib>Nazari, Masoumeh</creatorcontrib><creatorcontrib>Davoodabadi, Ali</creatorcontrib><creatorcontrib>Nazifi, Sina</creatorcontrib><creatorcontrib>Huang, Zixu</creatorcontrib><creatorcontrib>Bao, Jiming</creatorcontrib><creatorcontrib>Ghasemi, Hadi</creatorcontrib><collection>SpringerOpen</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hakimian, Alireza</au><au>Mohebinia, Mohammadjavad</au><au>Nazari, Masoumeh</au><au>Davoodabadi, Ali</au><au>Nazifi, Sina</au><au>Huang, Zixu</au><au>Bao, Jiming</au><au>Ghasemi, Hadi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Freezing of few nanometers water droplets</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><addtitle>Nat Commun</addtitle><date>2021-11-30</date><risdate>2021</risdate><volume>12</volume><issue>1</issue><spage>6973</spage><epage>8</epage><pages>6973-8</pages><artnum>6973</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>Water-ice transformation of few nm nanodroplets plays a critical role in nature including climate change, microphysics of clouds, survival mechanism of animals in cold environments, and a broad spectrum of technologies. In most of these scenarios, water-ice transformation occurs in a heterogenous mode where nanodroplets are in contact with another medium. Despite computational efforts, experimental probing of this transformation at few nm scales remains unresolved. Here, we report direct probing of water-ice transformation down to 2 nm scale and the length-scale dependence of transformation temperature through two independent metrologies. The transformation temperature shows a sharp length dependence in nanodroplets smaller than 10 nm and for 2 nm droplet, this temperature falls below the homogenous bulk nucleation limit. Contrary to nucleation on curved rigid solid surfaces, ice formation on soft interfaces (omnipresent in nature) can deform the interface leading to suppression of ice nucleation. For soft interfaces, ice nucleation temperature depends on surface modulus. Considering the interfacial deformation, the findings are in good agreement with predictions of classical nucleation theory. This understanding contributes to a greater knowledge of natural phenomena and rational design of anti-icing systems for aviation, wind energy and infrastructures and even cryopreservation systems.
Ice nucleation in confined geometries is a ubiquitous phenomenon, but difficult to characterize. Here the authors investigate experimentally the freezing of water nanodroplets surrounded by octane in nanopores down to 2 nm, and demonstrate that the soft curved oil-water interface suppresses heterogeneous ice nucleation, which occurs at a lower temperature than homogenous bulk nucleation.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>34848730</pmid><doi>10.1038/s41467-021-27346-w</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-7252-2631</orcidid><orcidid>https://orcid.org/0000-0002-0554-4248</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2041-1723 |
ispartof | Nature communications, 2021-11, Vol.12 (1), p.6973-8, Article 6973 |
issn | 2041-1723 2041-1723 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_93b3228db4fa47b8b73e22baf9b74b50 |
source | Publicly Available Content Database (Proquest) (PQ_SDU_P3); Nature Journals; PubMed Central; Springer Nature - nature.com Journals - Fully Open Access |
subjects | 142/136 147/3 639/638/440/94 639/766/94 639/925/357 Climate change Clouds Computer applications Cryopreservation Deformation Deicing Droplets Freezing Humanities and Social Sciences Ice formation Ice nucleation Interfaces Membranes Microphysics multidisciplinary Nucleation Science Science (multidisciplinary) Solid surfaces Spectrum analysis Surfactants Temperature dependence Transformation temperature Water drops Wind power |
title | Freezing of few nanometers water droplets |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T20%3A23%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Freezing%20of%20few%20nanometers%20water%20droplets&rft.jtitle=Nature%20communications&rft.au=Hakimian,%20Alireza&rft.date=2021-11-30&rft.volume=12&rft.issue=1&rft.spage=6973&rft.epage=8&rft.pages=6973-8&rft.artnum=6973&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/s41467-021-27346-w&rft_dat=%3Cproquest_doaj_%3E2604656763%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c540t-80b8130aa4589075313740325cf7cf0a743e9cd7f25d1cbe438720bf28e49b583%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2604656763&rft_id=info:pmid/34848730&rfr_iscdi=true |