Loading…
CNMF: A Community-Based Fake News Mitigation Framework
Fake news propagation in online social networks (OSN) is one of the critical societal threats nowadays directing attention to fake news mitigation and intervention techniques. One of the typical mitigation techniques focus on initiating news mitigation campaigns targeting a specific set of users whe...
Saved in:
Published in: | Information (Basel) 2021-09, Vol.12 (9), p.376 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c367t-4eecd38d1d1f7dd6b433ebc6624971b21a560c71c06462b6c8d9b9e2c511a9bd3 |
---|---|
cites | cdi_FETCH-LOGICAL-c367t-4eecd38d1d1f7dd6b433ebc6624971b21a560c71c06462b6c8d9b9e2c511a9bd3 |
container_end_page | |
container_issue | 9 |
container_start_page | 376 |
container_title | Information (Basel) |
container_volume | 12 |
creator | Galal, Shaimaa Nagy, Noha El-Sharkawi, Mohamed. E. |
description | Fake news propagation in online social networks (OSN) is one of the critical societal threats nowadays directing attention to fake news mitigation and intervention techniques. One of the typical mitigation techniques focus on initiating news mitigation campaigns targeting a specific set of users when the infected set of users is known or targeting the entire network when the infected set of users is unknown. The contemporary mitigation techniques assume the campaign users’ acceptance to share a mitigation news (MN); however, in reality, user behavior is different. This paper focuses on devising a generic mitigation framework, where the social crowd can be employed to combat the influence of fake news in OSNs when the infected set of users is undefined. The framework is composed of three major phases: facts discovery, facts searching and, community recommendation. Mitigation news circulation is accomplished by recruiting a set of social crowd users (news propagators) who are likely to accept posting the mitigation news article. We propose a set of features that identify prospect OSN audiences and news propagators. Moreover, we inspect the variant properties of the news circulation process, such as incentivizing news propagators, determining the required number of news propagators, and the adaptivity of the MN circulation process. The paper pinpoints the significance of facts searching and news propagator’s behavior features introduced in the experimental results. |
doi_str_mv | 10.3390/info12090376 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_93b4feca6a85402985051a689464b31d</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_93b4feca6a85402985051a689464b31d</doaj_id><sourcerecordid>2576413427</sourcerecordid><originalsourceid>FETCH-LOGICAL-c367t-4eecd38d1d1f7dd6b433ebc6624971b21a560c71c06462b6c8d9b9e2c511a9bd3</originalsourceid><addsrcrecordid>eNpNkEtPAjEUhRujiQTZ-QMmcetoX9OHOySOmgBudN30NaTATLEdQvj3ghjD3dybm5PvnBwAbhF8IETCx9A1EWEoIeHsAgww5KLEVMjLs_sajHJewsNwLqhAA8Am81n9VIyLSWzbbRf6ffmss3dFrVe-mPtdLmahDwvdh9gVddKt38W0ugFXjV5nP_rbQ_BVv3xO3srpx-v7ZDwtLWG8L6n31hHhkEMNd44ZSog3ljFMJUcGI10xaDmykFGGDbPCSSM9thVCWhpHhuD9xHVRL9UmhVanvYo6qN9HTAulUx_s2itJDG281UyLikIsRQUrpJmQlFFD0JF1d2JtUvze-tyrZdym7hBf4YozigjF_KC6P6lsijkn3_y7IqiORavzoskPOTttqA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2576413427</pqid></control><display><type>article</type><title>CNMF: A Community-Based Fake News Mitigation Framework</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>Coronavirus Research Database</source><creator>Galal, Shaimaa ; Nagy, Noha ; El-Sharkawi, Mohamed. E.</creator><creatorcontrib>Galal, Shaimaa ; Nagy, Noha ; El-Sharkawi, Mohamed. E.</creatorcontrib><description>Fake news propagation in online social networks (OSN) is one of the critical societal threats nowadays directing attention to fake news mitigation and intervention techniques. One of the typical mitigation techniques focus on initiating news mitigation campaigns targeting a specific set of users when the infected set of users is known or targeting the entire network when the infected set of users is unknown. The contemporary mitigation techniques assume the campaign users’ acceptance to share a mitigation news (MN); however, in reality, user behavior is different. This paper focuses on devising a generic mitigation framework, where the social crowd can be employed to combat the influence of fake news in OSNs when the infected set of users is undefined. The framework is composed of three major phases: facts discovery, facts searching and, community recommendation. Mitigation news circulation is accomplished by recruiting a set of social crowd users (news propagators) who are likely to accept posting the mitigation news article. We propose a set of features that identify prospect OSN audiences and news propagators. Moreover, we inspect the variant properties of the news circulation process, such as incentivizing news propagators, determining the required number of news propagators, and the adaptivity of the MN circulation process. The paper pinpoints the significance of facts searching and news propagator’s behavior features introduced in the experimental results.</description><identifier>ISSN: 2078-2489</identifier><identifier>EISSN: 2078-2489</identifier><identifier>DOI: 10.3390/info12090376</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Algorithms ; Approximation ; Epidemics ; fake news ; fake news mitigation ; False information ; Influence ; Information sources ; News ; news propagators’ profiling ; Propagation ; Searching ; social crowd ; Social networks ; Swine flu ; User behavior ; Vaccines</subject><ispartof>Information (Basel), 2021-09, Vol.12 (9), p.376</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c367t-4eecd38d1d1f7dd6b433ebc6624971b21a560c71c06462b6c8d9b9e2c511a9bd3</citedby><cites>FETCH-LOGICAL-c367t-4eecd38d1d1f7dd6b433ebc6624971b21a560c71c06462b6c8d9b9e2c511a9bd3</cites><orcidid>0000-0001-7244-0564 ; 0000-0002-5675-9628</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2576413427/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2576413427?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,38516,43895,44590,74412,75126</link.rule.ids></links><search><creatorcontrib>Galal, Shaimaa</creatorcontrib><creatorcontrib>Nagy, Noha</creatorcontrib><creatorcontrib>El-Sharkawi, Mohamed. E.</creatorcontrib><title>CNMF: A Community-Based Fake News Mitigation Framework</title><title>Information (Basel)</title><description>Fake news propagation in online social networks (OSN) is one of the critical societal threats nowadays directing attention to fake news mitigation and intervention techniques. One of the typical mitigation techniques focus on initiating news mitigation campaigns targeting a specific set of users when the infected set of users is known or targeting the entire network when the infected set of users is unknown. The contemporary mitigation techniques assume the campaign users’ acceptance to share a mitigation news (MN); however, in reality, user behavior is different. This paper focuses on devising a generic mitigation framework, where the social crowd can be employed to combat the influence of fake news in OSNs when the infected set of users is undefined. The framework is composed of three major phases: facts discovery, facts searching and, community recommendation. Mitigation news circulation is accomplished by recruiting a set of social crowd users (news propagators) who are likely to accept posting the mitigation news article. We propose a set of features that identify prospect OSN audiences and news propagators. Moreover, we inspect the variant properties of the news circulation process, such as incentivizing news propagators, determining the required number of news propagators, and the adaptivity of the MN circulation process. The paper pinpoints the significance of facts searching and news propagator’s behavior features introduced in the experimental results.</description><subject>Algorithms</subject><subject>Approximation</subject><subject>Epidemics</subject><subject>fake news</subject><subject>fake news mitigation</subject><subject>False information</subject><subject>Influence</subject><subject>Information sources</subject><subject>News</subject><subject>news propagators’ profiling</subject><subject>Propagation</subject><subject>Searching</subject><subject>social crowd</subject><subject>Social networks</subject><subject>Swine flu</subject><subject>User behavior</subject><subject>Vaccines</subject><issn>2078-2489</issn><issn>2078-2489</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>COVID</sourceid><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNkEtPAjEUhRujiQTZ-QMmcetoX9OHOySOmgBudN30NaTATLEdQvj3ghjD3dybm5PvnBwAbhF8IETCx9A1EWEoIeHsAgww5KLEVMjLs_sajHJewsNwLqhAA8Am81n9VIyLSWzbbRf6ffmss3dFrVe-mPtdLmahDwvdh9gVddKt38W0ugFXjV5nP_rbQ_BVv3xO3srpx-v7ZDwtLWG8L6n31hHhkEMNd44ZSog3ljFMJUcGI10xaDmykFGGDbPCSSM9thVCWhpHhuD9xHVRL9UmhVanvYo6qN9HTAulUx_s2itJDG281UyLikIsRQUrpJmQlFFD0JF1d2JtUvze-tyrZdym7hBf4YozigjF_KC6P6lsijkn3_y7IqiORavzoskPOTttqA</recordid><startdate>20210901</startdate><enddate>20210901</enddate><creator>Galal, Shaimaa</creator><creator>Nagy, Noha</creator><creator>El-Sharkawi, Mohamed. E.</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>COVID</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-7244-0564</orcidid><orcidid>https://orcid.org/0000-0002-5675-9628</orcidid></search><sort><creationdate>20210901</creationdate><title>CNMF: A Community-Based Fake News Mitigation Framework</title><author>Galal, Shaimaa ; Nagy, Noha ; El-Sharkawi, Mohamed. E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c367t-4eecd38d1d1f7dd6b433ebc6624971b21a560c71c06462b6c8d9b9e2c511a9bd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Approximation</topic><topic>Epidemics</topic><topic>fake news</topic><topic>fake news mitigation</topic><topic>False information</topic><topic>Influence</topic><topic>Information sources</topic><topic>News</topic><topic>news propagators’ profiling</topic><topic>Propagation</topic><topic>Searching</topic><topic>social crowd</topic><topic>Social networks</topic><topic>Swine flu</topic><topic>User behavior</topic><topic>Vaccines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Galal, Shaimaa</creatorcontrib><creatorcontrib>Nagy, Noha</creatorcontrib><creatorcontrib>El-Sharkawi, Mohamed. E.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer science database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Directory of Open Access Journals</collection><jtitle>Information (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Galal, Shaimaa</au><au>Nagy, Noha</au><au>El-Sharkawi, Mohamed. E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>CNMF: A Community-Based Fake News Mitigation Framework</atitle><jtitle>Information (Basel)</jtitle><date>2021-09-01</date><risdate>2021</risdate><volume>12</volume><issue>9</issue><spage>376</spage><pages>376-</pages><issn>2078-2489</issn><eissn>2078-2489</eissn><abstract>Fake news propagation in online social networks (OSN) is one of the critical societal threats nowadays directing attention to fake news mitigation and intervention techniques. One of the typical mitigation techniques focus on initiating news mitigation campaigns targeting a specific set of users when the infected set of users is known or targeting the entire network when the infected set of users is unknown. The contemporary mitigation techniques assume the campaign users’ acceptance to share a mitigation news (MN); however, in reality, user behavior is different. This paper focuses on devising a generic mitigation framework, where the social crowd can be employed to combat the influence of fake news in OSNs when the infected set of users is undefined. The framework is composed of three major phases: facts discovery, facts searching and, community recommendation. Mitigation news circulation is accomplished by recruiting a set of social crowd users (news propagators) who are likely to accept posting the mitigation news article. We propose a set of features that identify prospect OSN audiences and news propagators. Moreover, we inspect the variant properties of the news circulation process, such as incentivizing news propagators, determining the required number of news propagators, and the adaptivity of the MN circulation process. The paper pinpoints the significance of facts searching and news propagator’s behavior features introduced in the experimental results.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/info12090376</doi><orcidid>https://orcid.org/0000-0001-7244-0564</orcidid><orcidid>https://orcid.org/0000-0002-5675-9628</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2078-2489 |
ispartof | Information (Basel), 2021-09, Vol.12 (9), p.376 |
issn | 2078-2489 2078-2489 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_93b4feca6a85402985051a689464b31d |
source | Publicly Available Content Database (Proquest) (PQ_SDU_P3); Coronavirus Research Database |
subjects | Algorithms Approximation Epidemics fake news fake news mitigation False information Influence Information sources News news propagators’ profiling Propagation Searching social crowd Social networks Swine flu User behavior Vaccines |
title | CNMF: A Community-Based Fake News Mitigation Framework |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T17%3A39%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=CNMF:%20A%20Community-Based%20Fake%20News%20Mitigation%20Framework&rft.jtitle=Information%20(Basel)&rft.au=Galal,%20Shaimaa&rft.date=2021-09-01&rft.volume=12&rft.issue=9&rft.spage=376&rft.pages=376-&rft.issn=2078-2489&rft.eissn=2078-2489&rft_id=info:doi/10.3390/info12090376&rft_dat=%3Cproquest_doaj_%3E2576413427%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c367t-4eecd38d1d1f7dd6b433ebc6624971b21a560c71c06462b6c8d9b9e2c511a9bd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2576413427&rft_id=info:pmid/&rfr_iscdi=true |