Loading…

CNMF: A Community-Based Fake News Mitigation Framework

Fake news propagation in online social networks (OSN) is one of the critical societal threats nowadays directing attention to fake news mitigation and intervention techniques. One of the typical mitigation techniques focus on initiating news mitigation campaigns targeting a specific set of users whe...

Full description

Saved in:
Bibliographic Details
Published in:Information (Basel) 2021-09, Vol.12 (9), p.376
Main Authors: Galal, Shaimaa, Nagy, Noha, El-Sharkawi, Mohamed. E.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c367t-4eecd38d1d1f7dd6b433ebc6624971b21a560c71c06462b6c8d9b9e2c511a9bd3
cites cdi_FETCH-LOGICAL-c367t-4eecd38d1d1f7dd6b433ebc6624971b21a560c71c06462b6c8d9b9e2c511a9bd3
container_end_page
container_issue 9
container_start_page 376
container_title Information (Basel)
container_volume 12
creator Galal, Shaimaa
Nagy, Noha
El-Sharkawi, Mohamed. E.
description Fake news propagation in online social networks (OSN) is one of the critical societal threats nowadays directing attention to fake news mitigation and intervention techniques. One of the typical mitigation techniques focus on initiating news mitigation campaigns targeting a specific set of users when the infected set of users is known or targeting the entire network when the infected set of users is unknown. The contemporary mitigation techniques assume the campaign users’ acceptance to share a mitigation news (MN); however, in reality, user behavior is different. This paper focuses on devising a generic mitigation framework, where the social crowd can be employed to combat the influence of fake news in OSNs when the infected set of users is undefined. The framework is composed of three major phases: facts discovery, facts searching and, community recommendation. Mitigation news circulation is accomplished by recruiting a set of social crowd users (news propagators) who are likely to accept posting the mitigation news article. We propose a set of features that identify prospect OSN audiences and news propagators. Moreover, we inspect the variant properties of the news circulation process, such as incentivizing news propagators, determining the required number of news propagators, and the adaptivity of the MN circulation process. The paper pinpoints the significance of facts searching and news propagator’s behavior features introduced in the experimental results.
doi_str_mv 10.3390/info12090376
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_93b4feca6a85402985051a689464b31d</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_93b4feca6a85402985051a689464b31d</doaj_id><sourcerecordid>2576413427</sourcerecordid><originalsourceid>FETCH-LOGICAL-c367t-4eecd38d1d1f7dd6b433ebc6624971b21a560c71c06462b6c8d9b9e2c511a9bd3</originalsourceid><addsrcrecordid>eNpNkEtPAjEUhRujiQTZ-QMmcetoX9OHOySOmgBudN30NaTATLEdQvj3ghjD3dybm5PvnBwAbhF8IETCx9A1EWEoIeHsAgww5KLEVMjLs_sajHJewsNwLqhAA8Am81n9VIyLSWzbbRf6ffmss3dFrVe-mPtdLmahDwvdh9gVddKt38W0ugFXjV5nP_rbQ_BVv3xO3srpx-v7ZDwtLWG8L6n31hHhkEMNd44ZSog3ljFMJUcGI10xaDmykFGGDbPCSSM9thVCWhpHhuD9xHVRL9UmhVanvYo6qN9HTAulUx_s2itJDG281UyLikIsRQUrpJmQlFFD0JF1d2JtUvze-tyrZdym7hBf4YozigjF_KC6P6lsijkn3_y7IqiORavzoskPOTttqA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2576413427</pqid></control><display><type>article</type><title>CNMF: A Community-Based Fake News Mitigation Framework</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>Coronavirus Research Database</source><creator>Galal, Shaimaa ; Nagy, Noha ; El-Sharkawi, Mohamed. E.</creator><creatorcontrib>Galal, Shaimaa ; Nagy, Noha ; El-Sharkawi, Mohamed. E.</creatorcontrib><description>Fake news propagation in online social networks (OSN) is one of the critical societal threats nowadays directing attention to fake news mitigation and intervention techniques. One of the typical mitigation techniques focus on initiating news mitigation campaigns targeting a specific set of users when the infected set of users is known or targeting the entire network when the infected set of users is unknown. The contemporary mitigation techniques assume the campaign users’ acceptance to share a mitigation news (MN); however, in reality, user behavior is different. This paper focuses on devising a generic mitigation framework, where the social crowd can be employed to combat the influence of fake news in OSNs when the infected set of users is undefined. The framework is composed of three major phases: facts discovery, facts searching and, community recommendation. Mitigation news circulation is accomplished by recruiting a set of social crowd users (news propagators) who are likely to accept posting the mitigation news article. We propose a set of features that identify prospect OSN audiences and news propagators. Moreover, we inspect the variant properties of the news circulation process, such as incentivizing news propagators, determining the required number of news propagators, and the adaptivity of the MN circulation process. The paper pinpoints the significance of facts searching and news propagator’s behavior features introduced in the experimental results.</description><identifier>ISSN: 2078-2489</identifier><identifier>EISSN: 2078-2489</identifier><identifier>DOI: 10.3390/info12090376</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Algorithms ; Approximation ; Epidemics ; fake news ; fake news mitigation ; False information ; Influence ; Information sources ; News ; news propagators’ profiling ; Propagation ; Searching ; social crowd ; Social networks ; Swine flu ; User behavior ; Vaccines</subject><ispartof>Information (Basel), 2021-09, Vol.12 (9), p.376</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c367t-4eecd38d1d1f7dd6b433ebc6624971b21a560c71c06462b6c8d9b9e2c511a9bd3</citedby><cites>FETCH-LOGICAL-c367t-4eecd38d1d1f7dd6b433ebc6624971b21a560c71c06462b6c8d9b9e2c511a9bd3</cites><orcidid>0000-0001-7244-0564 ; 0000-0002-5675-9628</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2576413427/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2576413427?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,38516,43895,44590,74412,75126</link.rule.ids></links><search><creatorcontrib>Galal, Shaimaa</creatorcontrib><creatorcontrib>Nagy, Noha</creatorcontrib><creatorcontrib>El-Sharkawi, Mohamed. E.</creatorcontrib><title>CNMF: A Community-Based Fake News Mitigation Framework</title><title>Information (Basel)</title><description>Fake news propagation in online social networks (OSN) is one of the critical societal threats nowadays directing attention to fake news mitigation and intervention techniques. One of the typical mitigation techniques focus on initiating news mitigation campaigns targeting a specific set of users when the infected set of users is known or targeting the entire network when the infected set of users is unknown. The contemporary mitigation techniques assume the campaign users’ acceptance to share a mitigation news (MN); however, in reality, user behavior is different. This paper focuses on devising a generic mitigation framework, where the social crowd can be employed to combat the influence of fake news in OSNs when the infected set of users is undefined. The framework is composed of three major phases: facts discovery, facts searching and, community recommendation. Mitigation news circulation is accomplished by recruiting a set of social crowd users (news propagators) who are likely to accept posting the mitigation news article. We propose a set of features that identify prospect OSN audiences and news propagators. Moreover, we inspect the variant properties of the news circulation process, such as incentivizing news propagators, determining the required number of news propagators, and the adaptivity of the MN circulation process. The paper pinpoints the significance of facts searching and news propagator’s behavior features introduced in the experimental results.</description><subject>Algorithms</subject><subject>Approximation</subject><subject>Epidemics</subject><subject>fake news</subject><subject>fake news mitigation</subject><subject>False information</subject><subject>Influence</subject><subject>Information sources</subject><subject>News</subject><subject>news propagators’ profiling</subject><subject>Propagation</subject><subject>Searching</subject><subject>social crowd</subject><subject>Social networks</subject><subject>Swine flu</subject><subject>User behavior</subject><subject>Vaccines</subject><issn>2078-2489</issn><issn>2078-2489</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>COVID</sourceid><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNkEtPAjEUhRujiQTZ-QMmcetoX9OHOySOmgBudN30NaTATLEdQvj3ghjD3dybm5PvnBwAbhF8IETCx9A1EWEoIeHsAgww5KLEVMjLs_sajHJewsNwLqhAA8Am81n9VIyLSWzbbRf6ffmss3dFrVe-mPtdLmahDwvdh9gVddKt38W0ugFXjV5nP_rbQ_BVv3xO3srpx-v7ZDwtLWG8L6n31hHhkEMNd44ZSog3ljFMJUcGI10xaDmykFGGDbPCSSM9thVCWhpHhuD9xHVRL9UmhVanvYo6qN9HTAulUx_s2itJDG281UyLikIsRQUrpJmQlFFD0JF1d2JtUvze-tyrZdym7hBf4YozigjF_KC6P6lsijkn3_y7IqiORavzoskPOTttqA</recordid><startdate>20210901</startdate><enddate>20210901</enddate><creator>Galal, Shaimaa</creator><creator>Nagy, Noha</creator><creator>El-Sharkawi, Mohamed. E.</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>COVID</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-7244-0564</orcidid><orcidid>https://orcid.org/0000-0002-5675-9628</orcidid></search><sort><creationdate>20210901</creationdate><title>CNMF: A Community-Based Fake News Mitigation Framework</title><author>Galal, Shaimaa ; Nagy, Noha ; El-Sharkawi, Mohamed. E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c367t-4eecd38d1d1f7dd6b433ebc6624971b21a560c71c06462b6c8d9b9e2c511a9bd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Approximation</topic><topic>Epidemics</topic><topic>fake news</topic><topic>fake news mitigation</topic><topic>False information</topic><topic>Influence</topic><topic>Information sources</topic><topic>News</topic><topic>news propagators’ profiling</topic><topic>Propagation</topic><topic>Searching</topic><topic>social crowd</topic><topic>Social networks</topic><topic>Swine flu</topic><topic>User behavior</topic><topic>Vaccines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Galal, Shaimaa</creatorcontrib><creatorcontrib>Nagy, Noha</creatorcontrib><creatorcontrib>El-Sharkawi, Mohamed. E.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer science database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Directory of Open Access Journals</collection><jtitle>Information (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Galal, Shaimaa</au><au>Nagy, Noha</au><au>El-Sharkawi, Mohamed. E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>CNMF: A Community-Based Fake News Mitigation Framework</atitle><jtitle>Information (Basel)</jtitle><date>2021-09-01</date><risdate>2021</risdate><volume>12</volume><issue>9</issue><spage>376</spage><pages>376-</pages><issn>2078-2489</issn><eissn>2078-2489</eissn><abstract>Fake news propagation in online social networks (OSN) is one of the critical societal threats nowadays directing attention to fake news mitigation and intervention techniques. One of the typical mitigation techniques focus on initiating news mitigation campaigns targeting a specific set of users when the infected set of users is known or targeting the entire network when the infected set of users is unknown. The contemporary mitigation techniques assume the campaign users’ acceptance to share a mitigation news (MN); however, in reality, user behavior is different. This paper focuses on devising a generic mitigation framework, where the social crowd can be employed to combat the influence of fake news in OSNs when the infected set of users is undefined. The framework is composed of three major phases: facts discovery, facts searching and, community recommendation. Mitigation news circulation is accomplished by recruiting a set of social crowd users (news propagators) who are likely to accept posting the mitigation news article. We propose a set of features that identify prospect OSN audiences and news propagators. Moreover, we inspect the variant properties of the news circulation process, such as incentivizing news propagators, determining the required number of news propagators, and the adaptivity of the MN circulation process. The paper pinpoints the significance of facts searching and news propagator’s behavior features introduced in the experimental results.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/info12090376</doi><orcidid>https://orcid.org/0000-0001-7244-0564</orcidid><orcidid>https://orcid.org/0000-0002-5675-9628</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2078-2489
ispartof Information (Basel), 2021-09, Vol.12 (9), p.376
issn 2078-2489
2078-2489
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_93b4feca6a85402985051a689464b31d
source Publicly Available Content Database (Proquest) (PQ_SDU_P3); Coronavirus Research Database
subjects Algorithms
Approximation
Epidemics
fake news
fake news mitigation
False information
Influence
Information sources
News
news propagators’ profiling
Propagation
Searching
social crowd
Social networks
Swine flu
User behavior
Vaccines
title CNMF: A Community-Based Fake News Mitigation Framework
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T17%3A39%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=CNMF:%20A%20Community-Based%20Fake%20News%20Mitigation%20Framework&rft.jtitle=Information%20(Basel)&rft.au=Galal,%20Shaimaa&rft.date=2021-09-01&rft.volume=12&rft.issue=9&rft.spage=376&rft.pages=376-&rft.issn=2078-2489&rft.eissn=2078-2489&rft_id=info:doi/10.3390/info12090376&rft_dat=%3Cproquest_doaj_%3E2576413427%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c367t-4eecd38d1d1f7dd6b433ebc6624971b21a560c71c06462b6c8d9b9e2c511a9bd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2576413427&rft_id=info:pmid/&rfr_iscdi=true