Loading…
Multicellular factor analysis of single-cell data for a tissue-centric understanding of disease
Biomedical single-cell atlases describe disease at the cellular level. However, analysis of this data commonly focuses on cell-type-centric pairwise cross-condition comparisons, disregarding the multicellular nature of disease processes. Here, we propose multicellular factor analysis for the unsuper...
Saved in:
Published in: | eLife 2023-11, Vol.12 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c577t-fc5fc9702ddbcf723a53fff5ef93fe0f3fd969f413b77a0390551b2b90b6fa083 |
---|---|
cites | cdi_FETCH-LOGICAL-c577t-fc5fc9702ddbcf723a53fff5ef93fe0f3fd969f413b77a0390551b2b90b6fa083 |
container_end_page | |
container_issue | |
container_start_page | |
container_title | eLife |
container_volume | 12 |
creator | Ramirez Flores, Ricardo Omar Lanzer, Jan David Dimitrov, Daniel Velten, Britta Saez-Rodriguez, Julio |
description | Biomedical single-cell atlases describe disease at the cellular level. However, analysis of this data commonly focuses on cell-type-centric pairwise cross-condition comparisons, disregarding the multicellular nature of disease processes. Here, we propose multicellular factor analysis for the unsupervised analysis of samples from cross-condition single-cell atlases and the identification of multicellular programs associated with disease. Our strategy, which repurposes group factor analysis as implemented in multi-omics factor analysis, incorporates the variation of patient samples across cell-types or other tissue-centric features, such as cell compositions or spatial relationships, and enables the joint analysis of multiple patient cohorts, facilitating the integration of atlases. We applied our framework to a collection of acute and chronic human heart failure atlases and described multicellular processes of cardiac remodeling, independent to cellular compositions and their local organization, that were conserved in independent spatial and bulk transcriptomics datasets. In sum, our framework serves as an exploratory tool for unsupervised analysis of cross-condition single-cell atlases and allows for the integration of the measurements of patient cohorts across distinct data modalities. |
doi_str_mv | 10.7554/eLife.93161 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_93be7c3e8a9646d7971c6c8d0c8f4c51</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A776214448</galeid><doaj_id>oai_doaj_org_article_93be7c3e8a9646d7971c6c8d0c8f4c51</doaj_id><sourcerecordid>A776214448</sourcerecordid><originalsourceid>FETCH-LOGICAL-c577t-fc5fc9702ddbcf723a53fff5ef93fe0f3fd969f413b77a0390551b2b90b6fa083</originalsourceid><addsrcrecordid>eNptkt1rFDEUxQdRbKl98l0GfLHIrskkmSRPUoofCyuCH-BbuJPkrllmJzWZEfvfm9mttSsmDwk3v3vCPZyqekrJUgrBX_l1QL_UjLb0QXXaEEEWRPFvD-_dT6rznLekLMmVovpxdcKk1pQrclqZD1M_Buv7fuoh1Qh2jKmGAfqbHHIdsc5h2PR-MSO1gxFqnIF6DDlPc3kYU7D1NDif8giDK_jc5kL2kP2T6hFCn_357XlWfX375svV-8X647vV1eV6YYWU4wKtQKslaZzrLMqGgWCIKDxqhp4gQ6dbjZyyTkogTBMhaNd0mnQtAlHsrFoddF2ErblOYQfpxkQIZl-IaWMglUF7bzTrvLTMK9Atb53UktrWKkesQm4FLVqvD1rXU7fzbj8i9Eeixy9D-G428aehRFIlGl0UXtwqpPhj8nk0u5BnB2HwccqmUbppheKsKejzf9BtnFLxv1CaKCIladlfagNlgjBgLB_bWdRcStk2lHM-m7D8D1W287tg4-AxlPpRw8VRQ2FG_2vcwJSzWX3-dMy-PLA2xZyTxztDKDFzFs0-i2afxUI_u-_hHfsneew3oRPZog</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2908077063</pqid></control><display><type>article</type><title>Multicellular factor analysis of single-cell data for a tissue-centric understanding of disease</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Ramirez Flores, Ricardo Omar ; Lanzer, Jan David ; Dimitrov, Daniel ; Velten, Britta ; Saez-Rodriguez, Julio</creator><creatorcontrib>Ramirez Flores, Ricardo Omar ; Lanzer, Jan David ; Dimitrov, Daniel ; Velten, Britta ; Saez-Rodriguez, Julio</creatorcontrib><description>Biomedical single-cell atlases describe disease at the cellular level. However, analysis of this data commonly focuses on cell-type-centric pairwise cross-condition comparisons, disregarding the multicellular nature of disease processes. Here, we propose multicellular factor analysis for the unsupervised analysis of samples from cross-condition single-cell atlases and the identification of multicellular programs associated with disease. Our strategy, which repurposes group factor analysis as implemented in multi-omics factor analysis, incorporates the variation of patient samples across cell-types or other tissue-centric features, such as cell compositions or spatial relationships, and enables the joint analysis of multiple patient cohorts, facilitating the integration of atlases. We applied our framework to a collection of acute and chronic human heart failure atlases and described multicellular processes of cardiac remodeling, independent to cellular compositions and their local organization, that were conserved in independent spatial and bulk transcriptomics datasets. In sum, our framework serves as an exploratory tool for unsupervised analysis of cross-condition single-cell atlases and allows for the integration of the measurements of patient cohorts across distinct data modalities.</description><identifier>ISSN: 2050-084X</identifier><identifier>EISSN: 2050-084X</identifier><identifier>DOI: 10.7554/eLife.93161</identifier><identifier>PMID: 37991480</identifier><language>eng</language><publisher>England: eLife Science Publications, Ltd</publisher><subject>bulk ; Communication ; Computational and Systems Biology ; Congestive heart failure ; Factor analysis ; Gene expression ; Gene Expression Profiling ; Geospatial data ; Humans ; Independent study ; Input output ; Missing data ; multicellular ; Single-Cell Analysis ; single-cell atlas ; spatial ; Statistical analysis ; tissue ; Transcriptomics</subject><ispartof>eLife, 2023-11, Vol.12</ispartof><rights>2023, Ramirez Flores et al.</rights><rights>COPYRIGHT 2023 eLife Science Publications, Ltd.</rights><rights>2023, Ramirez Flores et al. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2023, Ramirez Flores et al 2023 Ramirez Flores et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c577t-fc5fc9702ddbcf723a53fff5ef93fe0f3fd969f413b77a0390551b2b90b6fa083</citedby><cites>FETCH-LOGICAL-c577t-fc5fc9702ddbcf723a53fff5ef93fe0f3fd969f413b77a0390551b2b90b6fa083</cites><orcidid>0000-0002-8397-3515 ; 0000-0003-0087-371X ; 0000-0002-8552-8976</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2908077063/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2908077063?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25752,27923,27924,37011,37012,44589,53790,53792,74997</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37991480$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ramirez Flores, Ricardo Omar</creatorcontrib><creatorcontrib>Lanzer, Jan David</creatorcontrib><creatorcontrib>Dimitrov, Daniel</creatorcontrib><creatorcontrib>Velten, Britta</creatorcontrib><creatorcontrib>Saez-Rodriguez, Julio</creatorcontrib><title>Multicellular factor analysis of single-cell data for a tissue-centric understanding of disease</title><title>eLife</title><addtitle>Elife</addtitle><description>Biomedical single-cell atlases describe disease at the cellular level. However, analysis of this data commonly focuses on cell-type-centric pairwise cross-condition comparisons, disregarding the multicellular nature of disease processes. Here, we propose multicellular factor analysis for the unsupervised analysis of samples from cross-condition single-cell atlases and the identification of multicellular programs associated with disease. Our strategy, which repurposes group factor analysis as implemented in multi-omics factor analysis, incorporates the variation of patient samples across cell-types or other tissue-centric features, such as cell compositions or spatial relationships, and enables the joint analysis of multiple patient cohorts, facilitating the integration of atlases. We applied our framework to a collection of acute and chronic human heart failure atlases and described multicellular processes of cardiac remodeling, independent to cellular compositions and their local organization, that were conserved in independent spatial and bulk transcriptomics datasets. In sum, our framework serves as an exploratory tool for unsupervised analysis of cross-condition single-cell atlases and allows for the integration of the measurements of patient cohorts across distinct data modalities.</description><subject>bulk</subject><subject>Communication</subject><subject>Computational and Systems Biology</subject><subject>Congestive heart failure</subject><subject>Factor analysis</subject><subject>Gene expression</subject><subject>Gene Expression Profiling</subject><subject>Geospatial data</subject><subject>Humans</subject><subject>Independent study</subject><subject>Input output</subject><subject>Missing data</subject><subject>multicellular</subject><subject>Single-Cell Analysis</subject><subject>single-cell atlas</subject><subject>spatial</subject><subject>Statistical analysis</subject><subject>tissue</subject><subject>Transcriptomics</subject><issn>2050-084X</issn><issn>2050-084X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptkt1rFDEUxQdRbKl98l0GfLHIrskkmSRPUoofCyuCH-BbuJPkrllmJzWZEfvfm9mttSsmDwk3v3vCPZyqekrJUgrBX_l1QL_UjLb0QXXaEEEWRPFvD-_dT6rznLekLMmVovpxdcKk1pQrclqZD1M_Buv7fuoh1Qh2jKmGAfqbHHIdsc5h2PR-MSO1gxFqnIF6DDlPc3kYU7D1NDif8giDK_jc5kL2kP2T6hFCn_357XlWfX375svV-8X647vV1eV6YYWU4wKtQKslaZzrLMqGgWCIKDxqhp4gQ6dbjZyyTkogTBMhaNd0mnQtAlHsrFoddF2ErblOYQfpxkQIZl-IaWMglUF7bzTrvLTMK9Atb53UktrWKkesQm4FLVqvD1rXU7fzbj8i9Eeixy9D-G428aehRFIlGl0UXtwqpPhj8nk0u5BnB2HwccqmUbppheKsKejzf9BtnFLxv1CaKCIladlfagNlgjBgLB_bWdRcStk2lHM-m7D8D1W287tg4-AxlPpRw8VRQ2FG_2vcwJSzWX3-dMy-PLA2xZyTxztDKDFzFs0-i2afxUI_u-_hHfsneew3oRPZog</recordid><startdate>20231122</startdate><enddate>20231122</enddate><creator>Ramirez Flores, Ricardo Omar</creator><creator>Lanzer, Jan David</creator><creator>Dimitrov, Daniel</creator><creator>Velten, Britta</creator><creator>Saez-Rodriguez, Julio</creator><general>eLife Science Publications, Ltd</general><general>eLife Sciences Publications Ltd</general><general>eLife Sciences Publications, Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-8397-3515</orcidid><orcidid>https://orcid.org/0000-0003-0087-371X</orcidid><orcidid>https://orcid.org/0000-0002-8552-8976</orcidid></search><sort><creationdate>20231122</creationdate><title>Multicellular factor analysis of single-cell data for a tissue-centric understanding of disease</title><author>Ramirez Flores, Ricardo Omar ; Lanzer, Jan David ; Dimitrov, Daniel ; Velten, Britta ; Saez-Rodriguez, Julio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c577t-fc5fc9702ddbcf723a53fff5ef93fe0f3fd969f413b77a0390551b2b90b6fa083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>bulk</topic><topic>Communication</topic><topic>Computational and Systems Biology</topic><topic>Congestive heart failure</topic><topic>Factor analysis</topic><topic>Gene expression</topic><topic>Gene Expression Profiling</topic><topic>Geospatial data</topic><topic>Humans</topic><topic>Independent study</topic><topic>Input output</topic><topic>Missing data</topic><topic>multicellular</topic><topic>Single-Cell Analysis</topic><topic>single-cell atlas</topic><topic>spatial</topic><topic>Statistical analysis</topic><topic>tissue</topic><topic>Transcriptomics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ramirez Flores, Ricardo Omar</creatorcontrib><creatorcontrib>Lanzer, Jan David</creatorcontrib><creatorcontrib>Dimitrov, Daniel</creatorcontrib><creatorcontrib>Velten, Britta</creatorcontrib><creatorcontrib>Saez-Rodriguez, Julio</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>eLife</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ramirez Flores, Ricardo Omar</au><au>Lanzer, Jan David</au><au>Dimitrov, Daniel</au><au>Velten, Britta</au><au>Saez-Rodriguez, Julio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multicellular factor analysis of single-cell data for a tissue-centric understanding of disease</atitle><jtitle>eLife</jtitle><addtitle>Elife</addtitle><date>2023-11-22</date><risdate>2023</risdate><volume>12</volume><issn>2050-084X</issn><eissn>2050-084X</eissn><abstract>Biomedical single-cell atlases describe disease at the cellular level. However, analysis of this data commonly focuses on cell-type-centric pairwise cross-condition comparisons, disregarding the multicellular nature of disease processes. Here, we propose multicellular factor analysis for the unsupervised analysis of samples from cross-condition single-cell atlases and the identification of multicellular programs associated with disease. Our strategy, which repurposes group factor analysis as implemented in multi-omics factor analysis, incorporates the variation of patient samples across cell-types or other tissue-centric features, such as cell compositions or spatial relationships, and enables the joint analysis of multiple patient cohorts, facilitating the integration of atlases. We applied our framework to a collection of acute and chronic human heart failure atlases and described multicellular processes of cardiac remodeling, independent to cellular compositions and their local organization, that were conserved in independent spatial and bulk transcriptomics datasets. In sum, our framework serves as an exploratory tool for unsupervised analysis of cross-condition single-cell atlases and allows for the integration of the measurements of patient cohorts across distinct data modalities.</abstract><cop>England</cop><pub>eLife Science Publications, Ltd</pub><pmid>37991480</pmid><doi>10.7554/eLife.93161</doi><orcidid>https://orcid.org/0000-0002-8397-3515</orcidid><orcidid>https://orcid.org/0000-0003-0087-371X</orcidid><orcidid>https://orcid.org/0000-0002-8552-8976</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2050-084X |
ispartof | eLife, 2023-11, Vol.12 |
issn | 2050-084X 2050-084X |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_93be7c3e8a9646d7971c6c8d0c8f4c51 |
source | Publicly Available Content Database; PubMed Central |
subjects | bulk Communication Computational and Systems Biology Congestive heart failure Factor analysis Gene expression Gene Expression Profiling Geospatial data Humans Independent study Input output Missing data multicellular Single-Cell Analysis single-cell atlas spatial Statistical analysis tissue Transcriptomics |
title | Multicellular factor analysis of single-cell data for a tissue-centric understanding of disease |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T17%3A04%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multicellular%20factor%20analysis%20of%20single-cell%20data%20for%20a%20tissue-centric%20understanding%20of%20disease&rft.jtitle=eLife&rft.au=Ramirez%20Flores,%20Ricardo%20Omar&rft.date=2023-11-22&rft.volume=12&rft.issn=2050-084X&rft.eissn=2050-084X&rft_id=info:doi/10.7554/eLife.93161&rft_dat=%3Cgale_doaj_%3EA776214448%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c577t-fc5fc9702ddbcf723a53fff5ef93fe0f3fd969f413b77a0390551b2b90b6fa083%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2908077063&rft_id=info:pmid/37991480&rft_galeid=A776214448&rfr_iscdi=true |