Loading…

Multi-Stage Semantic Segmentation Quantifies Fragmentation of Small Habitats at a Landscape Scale

Land cover (LC) maps are used extensively for nature conservation and landscape planning, but low spatial resolution and coarse LC schemas typically limit their applicability to large, broadly defined habitats. In order to target smaller and more-specific habitats, LC maps must be developed at high...

Full description

Saved in:
Bibliographic Details
Published in:Remote sensing (Basel, Switzerland) Switzerland), 2023-11, Vol.15 (22), p.5277
Main Authors: van der Plas, Thijs L., Geikie, Simon T., Alexander, David G., Simms, Daniel M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c359t-ca75969f3d996d01ac2afb8917c74c55ef976051fb24097a457f47c1d0454a0d3
container_end_page
container_issue 22
container_start_page 5277
container_title Remote sensing (Basel, Switzerland)
container_volume 15
creator van der Plas, Thijs L.
Geikie, Simon T.
Alexander, David G.
Simms, Daniel M.
description Land cover (LC) maps are used extensively for nature conservation and landscape planning, but low spatial resolution and coarse LC schemas typically limit their applicability to large, broadly defined habitats. In order to target smaller and more-specific habitats, LC maps must be developed at high resolution and fine class detail using automated methods that can efficiently scale to large areas of interest. In this work, we present a Machine Learning approach that addresses this challenge. First, we developed a multi-stage semantic segmentation approach that uses Convolutional Neural Networks (CNNs) to classify LC across the Peak District National Park (PDNP, 1439 km2) in the UK using a detailed, hierarchical LC schema. High-level classes were predicted with 95% accuracy and were subsequently used as masks to predict low-level classes with 72% to 92% accuracy. Next, we used these predictions to analyse the degree and distribution of fragmentation of one specific habitat—wet grassland and rush pasture—at the landscape scale in the PDNP. We found that fragmentation varied across areas designated as primary habitat, highlighting the importance of high-resolution LC maps provided by CNN-powered analysis for nature conservation.
doi_str_mv 10.3390/rs15225277
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_93d69546cccd40b59b21a99f0529a58e</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A774325679</galeid><doaj_id>oai_doaj_org_article_93d69546cccd40b59b21a99f0529a58e</doaj_id><sourcerecordid>A774325679</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-ca75969f3d996d01ac2afb8917c74c55ef976051fb24097a457f47c1d0454a0d3</originalsourceid><addsrcrecordid>eNpNUU1rGzEQXUIDCUku-QULuRXW0efKcwyhbgIuobg5i1l9GJndlSvJh_77ynFoPXOY4c3M4z2mae4pWXAO5DFlKhmTTKmL5poRxTrBgH0566-au5x3pAbnFIi4bvDHYSyh2xTcunbjJpxLMLXZTm4uWEKc25-HI-iDy-0q4dkg-nYz4Ti2LziEiuUWS4vtGmebDe4rn8HR3TaXHsfs7j7rTfO--vbr-aVbv31_fX5ad4ZLKJ1BJaEHzy1AbwlFw9APS6DKKGGkdB5UTyT1AxMEFAqpvFCGWiKkQGL5TfN64rURd3qfwoTpj44Y9AcQ01ZjquZGp4HbHqTojTFWkEHCwCgCeCIZoFy6yvVw4tqn-PvgctG7eEhzla_ZEjgXol_yurU4bW2rTR1mH0tCU9O6KZg4Ox8q_qSU4Ez2CurB19OBSTHn5Pw_mZTo4wv1_xfyv50BjIA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2893344683</pqid></control><display><type>article</type><title>Multi-Stage Semantic Segmentation Quantifies Fragmentation of Small Habitats at a Landscape Scale</title><source>Publicly Available Content (ProQuest)</source><creator>van der Plas, Thijs L. ; Geikie, Simon T. ; Alexander, David G. ; Simms, Daniel M.</creator><creatorcontrib>van der Plas, Thijs L. ; Geikie, Simon T. ; Alexander, David G. ; Simms, Daniel M.</creatorcontrib><description>Land cover (LC) maps are used extensively for nature conservation and landscape planning, but low spatial resolution and coarse LC schemas typically limit their applicability to large, broadly defined habitats. In order to target smaller and more-specific habitats, LC maps must be developed at high resolution and fine class detail using automated methods that can efficiently scale to large areas of interest. In this work, we present a Machine Learning approach that addresses this challenge. First, we developed a multi-stage semantic segmentation approach that uses Convolutional Neural Networks (CNNs) to classify LC across the Peak District National Park (PDNP, 1439 km2) in the UK using a detailed, hierarchical LC schema. High-level classes were predicted with 95% accuracy and were subsequently used as masks to predict low-level classes with 72% to 92% accuracy. Next, we used these predictions to analyse the degree and distribution of fragmentation of one specific habitat—wet grassland and rush pasture—at the landscape scale in the PDNP. We found that fragmentation varied across areas designated as primary habitat, highlighting the importance of high-resolution LC maps provided by CNN-powered analysis for nature conservation.</description><identifier>ISSN: 2072-4292</identifier><identifier>EISSN: 2072-4292</identifier><identifier>DOI: 10.3390/rs15225277</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Artificial neural networks ; Automation ; Climatic changes ; convolutional neural network ; Datasets ; Ecology ; Ecosystems ; Fragmentation ; Grasslands ; Habitat destruction ; habitat fragmentation ; Habitats ; High resolution ; Land cover ; land cover prediction ; Landscape architecture ; Landscape preservation ; Machine learning ; National parks ; Nature conservation ; Neural networks ; Pasture ; remote sensing ; Semantic segmentation ; Spatial discrimination ; Spatial resolution</subject><ispartof>Remote sensing (Basel, Switzerland), 2023-11, Vol.15 (22), p.5277</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c359t-ca75969f3d996d01ac2afb8917c74c55ef976051fb24097a457f47c1d0454a0d3</cites><orcidid>0009-0009-7189-9117 ; 0000-0001-6318-4052 ; 0000-0001-5490-1785 ; 0009-0001-5126-9419</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2893344683/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2893344683?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,25734,27905,27906,36993,44571,74875</link.rule.ids></links><search><creatorcontrib>van der Plas, Thijs L.</creatorcontrib><creatorcontrib>Geikie, Simon T.</creatorcontrib><creatorcontrib>Alexander, David G.</creatorcontrib><creatorcontrib>Simms, Daniel M.</creatorcontrib><title>Multi-Stage Semantic Segmentation Quantifies Fragmentation of Small Habitats at a Landscape Scale</title><title>Remote sensing (Basel, Switzerland)</title><description>Land cover (LC) maps are used extensively for nature conservation and landscape planning, but low spatial resolution and coarse LC schemas typically limit their applicability to large, broadly defined habitats. In order to target smaller and more-specific habitats, LC maps must be developed at high resolution and fine class detail using automated methods that can efficiently scale to large areas of interest. In this work, we present a Machine Learning approach that addresses this challenge. First, we developed a multi-stage semantic segmentation approach that uses Convolutional Neural Networks (CNNs) to classify LC across the Peak District National Park (PDNP, 1439 km2) in the UK using a detailed, hierarchical LC schema. High-level classes were predicted with 95% accuracy and were subsequently used as masks to predict low-level classes with 72% to 92% accuracy. Next, we used these predictions to analyse the degree and distribution of fragmentation of one specific habitat—wet grassland and rush pasture—at the landscape scale in the PDNP. We found that fragmentation varied across areas designated as primary habitat, highlighting the importance of high-resolution LC maps provided by CNN-powered analysis for nature conservation.</description><subject>Artificial neural networks</subject><subject>Automation</subject><subject>Climatic changes</subject><subject>convolutional neural network</subject><subject>Datasets</subject><subject>Ecology</subject><subject>Ecosystems</subject><subject>Fragmentation</subject><subject>Grasslands</subject><subject>Habitat destruction</subject><subject>habitat fragmentation</subject><subject>Habitats</subject><subject>High resolution</subject><subject>Land cover</subject><subject>land cover prediction</subject><subject>Landscape architecture</subject><subject>Landscape preservation</subject><subject>Machine learning</subject><subject>National parks</subject><subject>Nature conservation</subject><subject>Neural networks</subject><subject>Pasture</subject><subject>remote sensing</subject><subject>Semantic segmentation</subject><subject>Spatial discrimination</subject><subject>Spatial resolution</subject><issn>2072-4292</issn><issn>2072-4292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1rGzEQXUIDCUku-QULuRXW0efKcwyhbgIuobg5i1l9GJndlSvJh_77ynFoPXOY4c3M4z2mae4pWXAO5DFlKhmTTKmL5poRxTrBgH0566-au5x3pAbnFIi4bvDHYSyh2xTcunbjJpxLMLXZTm4uWEKc25-HI-iDy-0q4dkg-nYz4Ti2LziEiuUWS4vtGmebDe4rn8HR3TaXHsfs7j7rTfO--vbr-aVbv31_fX5ad4ZLKJ1BJaEHzy1AbwlFw9APS6DKKGGkdB5UTyT1AxMEFAqpvFCGWiKkQGL5TfN64rURd3qfwoTpj44Y9AcQ01ZjquZGp4HbHqTojTFWkEHCwCgCeCIZoFy6yvVw4tqn-PvgctG7eEhzla_ZEjgXol_yurU4bW2rTR1mH0tCU9O6KZg4Ox8q_qSU4Ez2CurB19OBSTHn5Pw_mZTo4wv1_xfyv50BjIA</recordid><startdate>20231101</startdate><enddate>20231101</enddate><creator>van der Plas, Thijs L.</creator><creator>Geikie, Simon T.</creator><creator>Alexander, David G.</creator><creator>Simms, Daniel M.</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>DOA</scope><orcidid>https://orcid.org/0009-0009-7189-9117</orcidid><orcidid>https://orcid.org/0000-0001-6318-4052</orcidid><orcidid>https://orcid.org/0000-0001-5490-1785</orcidid><orcidid>https://orcid.org/0009-0001-5126-9419</orcidid></search><sort><creationdate>20231101</creationdate><title>Multi-Stage Semantic Segmentation Quantifies Fragmentation of Small Habitats at a Landscape Scale</title><author>van der Plas, Thijs L. ; Geikie, Simon T. ; Alexander, David G. ; Simms, Daniel M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-ca75969f3d996d01ac2afb8917c74c55ef976051fb24097a457f47c1d0454a0d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Artificial neural networks</topic><topic>Automation</topic><topic>Climatic changes</topic><topic>convolutional neural network</topic><topic>Datasets</topic><topic>Ecology</topic><topic>Ecosystems</topic><topic>Fragmentation</topic><topic>Grasslands</topic><topic>Habitat destruction</topic><topic>habitat fragmentation</topic><topic>Habitats</topic><topic>High resolution</topic><topic>Land cover</topic><topic>land cover prediction</topic><topic>Landscape architecture</topic><topic>Landscape preservation</topic><topic>Machine learning</topic><topic>National parks</topic><topic>Nature conservation</topic><topic>Neural networks</topic><topic>Pasture</topic><topic>remote sensing</topic><topic>Semantic segmentation</topic><topic>Spatial discrimination</topic><topic>Spatial resolution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>van der Plas, Thijs L.</creatorcontrib><creatorcontrib>Geikie, Simon T.</creatorcontrib><creatorcontrib>Alexander, David G.</creatorcontrib><creatorcontrib>Simms, Daniel M.</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Remote sensing (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>van der Plas, Thijs L.</au><au>Geikie, Simon T.</au><au>Alexander, David G.</au><au>Simms, Daniel M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi-Stage Semantic Segmentation Quantifies Fragmentation of Small Habitats at a Landscape Scale</atitle><jtitle>Remote sensing (Basel, Switzerland)</jtitle><date>2023-11-01</date><risdate>2023</risdate><volume>15</volume><issue>22</issue><spage>5277</spage><pages>5277-</pages><issn>2072-4292</issn><eissn>2072-4292</eissn><abstract>Land cover (LC) maps are used extensively for nature conservation and landscape planning, but low spatial resolution and coarse LC schemas typically limit their applicability to large, broadly defined habitats. In order to target smaller and more-specific habitats, LC maps must be developed at high resolution and fine class detail using automated methods that can efficiently scale to large areas of interest. In this work, we present a Machine Learning approach that addresses this challenge. First, we developed a multi-stage semantic segmentation approach that uses Convolutional Neural Networks (CNNs) to classify LC across the Peak District National Park (PDNP, 1439 km2) in the UK using a detailed, hierarchical LC schema. High-level classes were predicted with 95% accuracy and were subsequently used as masks to predict low-level classes with 72% to 92% accuracy. Next, we used these predictions to analyse the degree and distribution of fragmentation of one specific habitat—wet grassland and rush pasture—at the landscape scale in the PDNP. We found that fragmentation varied across areas designated as primary habitat, highlighting the importance of high-resolution LC maps provided by CNN-powered analysis for nature conservation.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/rs15225277</doi><orcidid>https://orcid.org/0009-0009-7189-9117</orcidid><orcidid>https://orcid.org/0000-0001-6318-4052</orcidid><orcidid>https://orcid.org/0000-0001-5490-1785</orcidid><orcidid>https://orcid.org/0009-0001-5126-9419</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2072-4292
ispartof Remote sensing (Basel, Switzerland), 2023-11, Vol.15 (22), p.5277
issn 2072-4292
2072-4292
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_93d69546cccd40b59b21a99f0529a58e
source Publicly Available Content (ProQuest)
subjects Artificial neural networks
Automation
Climatic changes
convolutional neural network
Datasets
Ecology
Ecosystems
Fragmentation
Grasslands
Habitat destruction
habitat fragmentation
Habitats
High resolution
Land cover
land cover prediction
Landscape architecture
Landscape preservation
Machine learning
National parks
Nature conservation
Neural networks
Pasture
remote sensing
Semantic segmentation
Spatial discrimination
Spatial resolution
title Multi-Stage Semantic Segmentation Quantifies Fragmentation of Small Habitats at a Landscape Scale
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T11%3A24%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi-Stage%20Semantic%20Segmentation%20Quantifies%20Fragmentation%20of%20Small%20Habitats%20at%20a%20Landscape%20Scale&rft.jtitle=Remote%20sensing%20(Basel,%20Switzerland)&rft.au=van%20der%20Plas,%20Thijs%20L.&rft.date=2023-11-01&rft.volume=15&rft.issue=22&rft.spage=5277&rft.pages=5277-&rft.issn=2072-4292&rft.eissn=2072-4292&rft_id=info:doi/10.3390/rs15225277&rft_dat=%3Cgale_doaj_%3EA774325679%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c359t-ca75969f3d996d01ac2afb8917c74c55ef976051fb24097a457f47c1d0454a0d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2893344683&rft_id=info:pmid/&rft_galeid=A774325679&rfr_iscdi=true