Loading…

Relationship Analysis of Inorganic Arsenic Exposure and Metabolic Syndrome Based on Propensity Score Matching in Xinjiang, China

The role of inorganic arsenic (iAs) in the risk of metabolic syndrome (MetS) remains unclear. This investigation focused on the effect of iAs exposure on MetS and whether the results are consistent in different subgroups. The present study was conducted on 629 men and 616 women aged 35-70 years and...

Full description

Saved in:
Bibliographic Details
Published in:Diabetes, metabolic syndrome and obesity metabolic syndrome and obesity, 2022-01, Vol.15, p.921-931
Main Authors: Nie, Yanwu, Wang, Chenchen, Yang, Lei, Yang, Zhen, Sun, Yahong, Tian, Maozai, Ma, Yuhua, Zhang, Yuxia, Yuan, Yimu, Zhang, Liping
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c548t-2d57a4b47eced77875eece64689d27b4c879dbb81315330871770be0635694e73
cites cdi_FETCH-LOGICAL-c548t-2d57a4b47eced77875eece64689d27b4c879dbb81315330871770be0635694e73
container_end_page 931
container_issue
container_start_page 921
container_title Diabetes, metabolic syndrome and obesity
container_volume 15
creator Nie, Yanwu
Wang, Chenchen
Yang, Lei
Yang, Zhen
Sun, Yahong
Tian, Maozai
Ma, Yuhua
Zhang, Yuxia
Yuan, Yimu
Zhang, Liping
description The role of inorganic arsenic (iAs) in the risk of metabolic syndrome (MetS) remains unclear. This investigation focused on the effect of iAs exposure on MetS and whether the results are consistent in different subgroups. The present study was conducted on 629 men and 616 women aged 35-70 years and living in Xinjiang Uygur Autonomous Region, China. The 1:1 propensity score matching (PSM) was adopted to regulate the confounding factors, and the multivariate logistic regression was performed to assess the relationship between urinary iAs and MetS. The median content of urinary iAs was examined as 2.20 μg/dL (interquartile range: 1.30-3.20 μg/dL), and the MetS prevalence reached 23.69% (295 cases/950 participants). After the confounding factors were adjusted, the ORs (95% CIs) for MetS from the minimal to the maximum urinary iAs quartiles reached 1.171 (0.736,1.863), 1.568 (1.008, 2.440) and 2.011 (1.296, 3.120), respectively (referencing 1.00) (P for trend=0.001). After the PSM, the urinary iAs content still plays a potential prediction role in MetS (P for trend=0.011). In addition, as revealed from the subgroup analysis, the urinary iAs content was a predictor of MetS in the female patients, whereas it did not serve as a significant predictor of MetS in the male patients (P for interaction
doi_str_mv 10.2147/DMSO.S349583
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_93ea9dbb2bf54f83950fbd0d9bb286e5</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A701253805</galeid><doaj_id>oai_doaj_org_article_93ea9dbb2bf54f83950fbd0d9bb286e5</doaj_id><sourcerecordid>A701253805</sourcerecordid><originalsourceid>FETCH-LOGICAL-c548t-2d57a4b47eced77875eece64689d27b4c879dbb81315330871770be0635694e73</originalsourceid><addsrcrecordid>eNptksGLEzEUxgdR3GXdm2cJCOJhW5NJMslchFpXLWxZsQreQiZ502aZJt1kKvbmn25mW5cWTA55fPm9j7zwFcVLgsclYeLdx_nidrygrOaSPinOCRFyJDAWT4_qs-IypTs8LIFZWT4vziinuSTkvPjzDTrdu-DTym3QxOtul1xCoUUzH-JSe2fQJCYYzuvfm5C2EZD2Fs2h103osrzYeRvDGtAHncCi4NHXGDbgk-t3aGFCbpjr3qycXyLn0U_n75z2yys0zZJ-UTxrdZfg8nBeFD8-XX-ffhnd3H6eTSc3I8OZ7Eel5UKzhgkwYIWQgkOuKlbJ2paiYUaK2jaNJJRwSrEURAjcAK4or2oGgl4Us72vDfpObaJb67hTQTv1IORZlY69Mx2omoIezMqm5ayVtOa4bSy2dZZkBTx7vd97bbbNGqwB30fdnZie3ni3UsvwS8m6yq8bDN4eDGK430Lq1dolA12nPYRtUmUerGZYVgP6eo8udX6a823IjmbA1URgUnIq8UCN_0PlbWHtTPDQuqyfNLw5aliB7vpVCt32IQqn4NUeNDGkFKF9HJNgNWRQDRlUhwxm_NXx1zzC_xJH_wLo-dZn</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2646940865</pqid></control><display><type>article</type><title>Relationship Analysis of Inorganic Arsenic Exposure and Metabolic Syndrome Based on Propensity Score Matching in Xinjiang, China</title><source>Publicly Available Content Database</source><source>Taylor &amp; Francis Open Access Journals</source><source>PubMed Central</source><creator>Nie, Yanwu ; Wang, Chenchen ; Yang, Lei ; Yang, Zhen ; Sun, Yahong ; Tian, Maozai ; Ma, Yuhua ; Zhang, Yuxia ; Yuan, Yimu ; Zhang, Liping</creator><creatorcontrib>Nie, Yanwu ; Wang, Chenchen ; Yang, Lei ; Yang, Zhen ; Sun, Yahong ; Tian, Maozai ; Ma, Yuhua ; Zhang, Yuxia ; Yuan, Yimu ; Zhang, Liping</creatorcontrib><description>The role of inorganic arsenic (iAs) in the risk of metabolic syndrome (MetS) remains unclear. This investigation focused on the effect of iAs exposure on MetS and whether the results are consistent in different subgroups. The present study was conducted on 629 men and 616 women aged 35-70 years and living in Xinjiang Uygur Autonomous Region, China. The 1:1 propensity score matching (PSM) was adopted to regulate the confounding factors, and the multivariate logistic regression was performed to assess the relationship between urinary iAs and MetS. The median content of urinary iAs was examined as 2.20 μg/dL (interquartile range: 1.30-3.20 μg/dL), and the MetS prevalence reached 23.69% (295 cases/950 participants). After the confounding factors were adjusted, the ORs (95% CIs) for MetS from the minimal to the maximum urinary iAs quartiles reached 1.171 (0.736,1.863), 1.568 (1.008, 2.440) and 2.011 (1.296, 3.120), respectively (referencing 1.00) (P for trend=0.001). After the PSM, the urinary iAs content still plays a potential prediction role in MetS (P for trend=0.011). In addition, as revealed from the subgroup analysis, the urinary iAs content was a predictor of MetS in the female patients, whereas it did not serve as a significant predictor of MetS in the male patients (P for interaction&lt;0.05). The increased urinary iAs content was associated with the increased prevalence of MetS in Chinese population. More attention should be paid to female urinary iAs content to avoid the high prevalence of MetS.</description><identifier>ISSN: 1178-7007</identifier><identifier>EISSN: 1178-7007</identifier><identifier>DOI: 10.2147/DMSO.S349583</identifier><identifier>PMID: 35370411</identifier><language>eng</language><publisher>New Zealand: Dove Medical Press Limited</publisher><subject>Analysis ; Arsenic ; metabolic syndrome ; Original Research ; propensity score matching ; subgroup analysis ; Type 2 diabetes ; urinary inorganic arsenic</subject><ispartof>Diabetes, metabolic syndrome and obesity, 2022-01, Vol.15, p.921-931</ispartof><rights>2022 Nie et al.</rights><rights>COPYRIGHT 2022 Dove Medical Press Limited</rights><rights>2022 Nie et al. 2022 Nie et al.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c548t-2d57a4b47eced77875eece64689d27b4c879dbb81315330871770be0635694e73</citedby><cites>FETCH-LOGICAL-c548t-2d57a4b47eced77875eece64689d27b4c879dbb81315330871770be0635694e73</cites><orcidid>0000-0002-0515-4477</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8965335/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8965335/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,36990,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35370411$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nie, Yanwu</creatorcontrib><creatorcontrib>Wang, Chenchen</creatorcontrib><creatorcontrib>Yang, Lei</creatorcontrib><creatorcontrib>Yang, Zhen</creatorcontrib><creatorcontrib>Sun, Yahong</creatorcontrib><creatorcontrib>Tian, Maozai</creatorcontrib><creatorcontrib>Ma, Yuhua</creatorcontrib><creatorcontrib>Zhang, Yuxia</creatorcontrib><creatorcontrib>Yuan, Yimu</creatorcontrib><creatorcontrib>Zhang, Liping</creatorcontrib><title>Relationship Analysis of Inorganic Arsenic Exposure and Metabolic Syndrome Based on Propensity Score Matching in Xinjiang, China</title><title>Diabetes, metabolic syndrome and obesity</title><addtitle>Diabetes Metab Syndr Obes</addtitle><description>The role of inorganic arsenic (iAs) in the risk of metabolic syndrome (MetS) remains unclear. This investigation focused on the effect of iAs exposure on MetS and whether the results are consistent in different subgroups. The present study was conducted on 629 men and 616 women aged 35-70 years and living in Xinjiang Uygur Autonomous Region, China. The 1:1 propensity score matching (PSM) was adopted to regulate the confounding factors, and the multivariate logistic regression was performed to assess the relationship between urinary iAs and MetS. The median content of urinary iAs was examined as 2.20 μg/dL (interquartile range: 1.30-3.20 μg/dL), and the MetS prevalence reached 23.69% (295 cases/950 participants). After the confounding factors were adjusted, the ORs (95% CIs) for MetS from the minimal to the maximum urinary iAs quartiles reached 1.171 (0.736,1.863), 1.568 (1.008, 2.440) and 2.011 (1.296, 3.120), respectively (referencing 1.00) (P for trend=0.001). After the PSM, the urinary iAs content still plays a potential prediction role in MetS (P for trend=0.011). In addition, as revealed from the subgroup analysis, the urinary iAs content was a predictor of MetS in the female patients, whereas it did not serve as a significant predictor of MetS in the male patients (P for interaction&lt;0.05). The increased urinary iAs content was associated with the increased prevalence of MetS in Chinese population. More attention should be paid to female urinary iAs content to avoid the high prevalence of MetS.</description><subject>Analysis</subject><subject>Arsenic</subject><subject>metabolic syndrome</subject><subject>Original Research</subject><subject>propensity score matching</subject><subject>subgroup analysis</subject><subject>Type 2 diabetes</subject><subject>urinary inorganic arsenic</subject><issn>1178-7007</issn><issn>1178-7007</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNptksGLEzEUxgdR3GXdm2cJCOJhW5NJMslchFpXLWxZsQreQiZ502aZJt1kKvbmn25mW5cWTA55fPm9j7zwFcVLgsclYeLdx_nidrygrOaSPinOCRFyJDAWT4_qs-IypTs8LIFZWT4vziinuSTkvPjzDTrdu-DTym3QxOtul1xCoUUzH-JSe2fQJCYYzuvfm5C2EZD2Fs2h103osrzYeRvDGtAHncCi4NHXGDbgk-t3aGFCbpjr3qycXyLn0U_n75z2yys0zZJ-UTxrdZfg8nBeFD8-XX-ffhnd3H6eTSc3I8OZ7Eel5UKzhgkwYIWQgkOuKlbJ2paiYUaK2jaNJJRwSrEURAjcAK4or2oGgl4Us72vDfpObaJb67hTQTv1IORZlY69Mx2omoIezMqm5ayVtOa4bSy2dZZkBTx7vd97bbbNGqwB30fdnZie3ni3UsvwS8m6yq8bDN4eDGK430Lq1dolA12nPYRtUmUerGZYVgP6eo8udX6a823IjmbA1URgUnIq8UCN_0PlbWHtTPDQuqyfNLw5aliB7vpVCt32IQqn4NUeNDGkFKF9HJNgNWRQDRlUhwxm_NXx1zzC_xJH_wLo-dZn</recordid><startdate>20220101</startdate><enddate>20220101</enddate><creator>Nie, Yanwu</creator><creator>Wang, Chenchen</creator><creator>Yang, Lei</creator><creator>Yang, Zhen</creator><creator>Sun, Yahong</creator><creator>Tian, Maozai</creator><creator>Ma, Yuhua</creator><creator>Zhang, Yuxia</creator><creator>Yuan, Yimu</creator><creator>Zhang, Liping</creator><general>Dove Medical Press Limited</general><general>Dove</general><general>Dove Medical Press</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-0515-4477</orcidid></search><sort><creationdate>20220101</creationdate><title>Relationship Analysis of Inorganic Arsenic Exposure and Metabolic Syndrome Based on Propensity Score Matching in Xinjiang, China</title><author>Nie, Yanwu ; Wang, Chenchen ; Yang, Lei ; Yang, Zhen ; Sun, Yahong ; Tian, Maozai ; Ma, Yuhua ; Zhang, Yuxia ; Yuan, Yimu ; Zhang, Liping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c548t-2d57a4b47eced77875eece64689d27b4c879dbb81315330871770be0635694e73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Analysis</topic><topic>Arsenic</topic><topic>metabolic syndrome</topic><topic>Original Research</topic><topic>propensity score matching</topic><topic>subgroup analysis</topic><topic>Type 2 diabetes</topic><topic>urinary inorganic arsenic</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nie, Yanwu</creatorcontrib><creatorcontrib>Wang, Chenchen</creatorcontrib><creatorcontrib>Yang, Lei</creatorcontrib><creatorcontrib>Yang, Zhen</creatorcontrib><creatorcontrib>Sun, Yahong</creatorcontrib><creatorcontrib>Tian, Maozai</creatorcontrib><creatorcontrib>Ma, Yuhua</creatorcontrib><creatorcontrib>Zhang, Yuxia</creatorcontrib><creatorcontrib>Yuan, Yimu</creatorcontrib><creatorcontrib>Zhang, Liping</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>Diabetes, metabolic syndrome and obesity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nie, Yanwu</au><au>Wang, Chenchen</au><au>Yang, Lei</au><au>Yang, Zhen</au><au>Sun, Yahong</au><au>Tian, Maozai</au><au>Ma, Yuhua</au><au>Zhang, Yuxia</au><au>Yuan, Yimu</au><au>Zhang, Liping</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Relationship Analysis of Inorganic Arsenic Exposure and Metabolic Syndrome Based on Propensity Score Matching in Xinjiang, China</atitle><jtitle>Diabetes, metabolic syndrome and obesity</jtitle><addtitle>Diabetes Metab Syndr Obes</addtitle><date>2022-01-01</date><risdate>2022</risdate><volume>15</volume><spage>921</spage><epage>931</epage><pages>921-931</pages><issn>1178-7007</issn><eissn>1178-7007</eissn><abstract>The role of inorganic arsenic (iAs) in the risk of metabolic syndrome (MetS) remains unclear. This investigation focused on the effect of iAs exposure on MetS and whether the results are consistent in different subgroups. The present study was conducted on 629 men and 616 women aged 35-70 years and living in Xinjiang Uygur Autonomous Region, China. The 1:1 propensity score matching (PSM) was adopted to regulate the confounding factors, and the multivariate logistic regression was performed to assess the relationship between urinary iAs and MetS. The median content of urinary iAs was examined as 2.20 μg/dL (interquartile range: 1.30-3.20 μg/dL), and the MetS prevalence reached 23.69% (295 cases/950 participants). After the confounding factors were adjusted, the ORs (95% CIs) for MetS from the minimal to the maximum urinary iAs quartiles reached 1.171 (0.736,1.863), 1.568 (1.008, 2.440) and 2.011 (1.296, 3.120), respectively (referencing 1.00) (P for trend=0.001). After the PSM, the urinary iAs content still plays a potential prediction role in MetS (P for trend=0.011). In addition, as revealed from the subgroup analysis, the urinary iAs content was a predictor of MetS in the female patients, whereas it did not serve as a significant predictor of MetS in the male patients (P for interaction&lt;0.05). The increased urinary iAs content was associated with the increased prevalence of MetS in Chinese population. More attention should be paid to female urinary iAs content to avoid the high prevalence of MetS.</abstract><cop>New Zealand</cop><pub>Dove Medical Press Limited</pub><pmid>35370411</pmid><doi>10.2147/DMSO.S349583</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-0515-4477</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1178-7007
ispartof Diabetes, metabolic syndrome and obesity, 2022-01, Vol.15, p.921-931
issn 1178-7007
1178-7007
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_93ea9dbb2bf54f83950fbd0d9bb286e5
source Publicly Available Content Database; Taylor & Francis Open Access Journals; PubMed Central
subjects Analysis
Arsenic
metabolic syndrome
Original Research
propensity score matching
subgroup analysis
Type 2 diabetes
urinary inorganic arsenic
title Relationship Analysis of Inorganic Arsenic Exposure and Metabolic Syndrome Based on Propensity Score Matching in Xinjiang, China
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T04%3A40%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Relationship%20Analysis%20of%20Inorganic%20Arsenic%20Exposure%20and%20Metabolic%20Syndrome%20Based%20on%20Propensity%20Score%20Matching%20in%20Xinjiang,%20China&rft.jtitle=Diabetes,%20metabolic%20syndrome%20and%20obesity&rft.au=Nie,%20Yanwu&rft.date=2022-01-01&rft.volume=15&rft.spage=921&rft.epage=931&rft.pages=921-931&rft.issn=1178-7007&rft.eissn=1178-7007&rft_id=info:doi/10.2147/DMSO.S349583&rft_dat=%3Cgale_doaj_%3EA701253805%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c548t-2d57a4b47eced77875eece64689d27b4c879dbb81315330871770be0635694e73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2646940865&rft_id=info:pmid/35370411&rft_galeid=A701253805&rfr_iscdi=true