Loading…

Exploration capacity versus specific enzymatic activity of ectomycorrhizas in response to primary productivity and soil phosphorus availability in Bornean tropical rainforests

Ectomycorrhizal (ECM) fungi are functionally important in biogeochemical cycles in tropical ecosystems. Extracellular enzymatic activity of ECM on a ground-area basis is the product of two attributes; exploration capacity (ECM surface-area) and specific enzymatic activity. Here, we elucidated which...

Full description

Saved in:
Bibliographic Details
Published in:Scientific reports 2024-02, Vol.14 (1), p.2842-2842, Article 2842
Main Authors: Okada, Kei-ichi, Yokoyama, Daiki, Aiba, Shin-ichiro, Kitayama, Kanehiro
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Ectomycorrhizal (ECM) fungi are functionally important in biogeochemical cycles in tropical ecosystems. Extracellular enzymatic activity of ECM on a ground-area basis is the product of two attributes; exploration capacity (ECM surface-area) and specific enzymatic activity. Here, we elucidated which attribute better explained the ECM enzymatic activity in response to different levels of soil phosphorus (P) and Nitrogen (N) availability in five Bornean tropical rainforests. We determined the surface area of ECM root tips as well as the enzymatic activities per ECM surface area for carbon (C), N and P degrading enzymes in each site. We evaluated the relationship of ECM enzyme activities with the resource availabilities of C (Above-ground net primary production; ANPP), N, and P of ECM by a generalized linear mixed model. The ECM enzymatic activities on a ground-area basis were more significantly determined by specific enzymatic activity than by the exploration capacity. Specific enzymatic activities were generally negatively affected by C (ANPP) and soil P availability. ECM fungi enhance the specific enzyme activity rather than the exploration capacity to maintain the capacity of nutrient acquisition. The less dependence of ECM fungi on the exploration capacity in these forests may be related to the limitation of C supply from host trees. We highlighted the adaptive mechanisms of ECM fungi on nutrient acquisition in tropical ecosystems through the response of enzymatic activity to nutrient availability across the elements.
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-024-53234-6