Loading…

Integration of Ground-Based Remote-Sensing and In Situ Multidisciplinary Monitoring Data to Analyze the Eruptive Activity of Stromboli Volcano in 2017–2018

After a period of mild eruptive activity, Stromboli showed between 2017 and 2018 a reawakening phase, with an increase in the eruptive activity starting in May 2017. The alert level of the volcano was raised from “green” (base) to “yellow” (attention) on 7 December 2017, and a small lava overflowed...

Full description

Saved in:
Bibliographic Details
Published in:Remote sensing (Basel, Switzerland) Switzerland), 2019-08, Vol.11 (15), p.1813
Main Authors: Giudicepietro, Flora, Calvari, Sonia, Alparone, Salvatore, Bianco, Francesca, Bonaccorso, Alessandro, Bruno, Valentina, Caputo, Teresa, Cristaldi, Antonio, D’Auria, Luca, De Cesare, Walter, Di Lieto, Bellina, Esposito, Antonietta M., Gambino, Salvatore, Inguaggiato, Salvatore, Macedonio, Giovanni, Martini, Marcello, Mattia, Mario, Orazi, Massimo, Paonita, Antonio, Peluso, Rosario, Privitera, Eugenio, Romano, Pierdomenico, Scarpato, Giovanni, Tramelli, Anna, Vita, Fabio
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:After a period of mild eruptive activity, Stromboli showed between 2017 and 2018 a reawakening phase, with an increase in the eruptive activity starting in May 2017. The alert level of the volcano was raised from “green” (base) to “yellow” (attention) on 7 December 2017, and a small lava overflowed the crater rim on 15 December 2017. Between July 2017 and August 2018 the monitoring networks recorded nine major explosions, which are a serious hazard for Stromboli because they affect the summit area, crowded by tourists. We studied the 2017–2018 eruptive phase through the analysis of multidisciplinary data comprising thermal video-camera images, seismic, geodetic and geochemical data. We focused on the major explosion mechanism analyzing the well-recorded 1 December 2017 major explosion as a case study. We found that the 2017–2018 eruptive phase is consistent with a greater gas-rich magma supply in the shallow system. Furthermore, through the analysis of the case study major explosion, we identified precursory phases in the strainmeter and seismic data occurring 77 and 38 s before the explosive jet reached the eruptive vent, respectively. On the basis of these short-term precursors, we propose an automatic timely alarm system for major explosions at Stromboli volcano.
ISSN:2072-4292
2072-4292
DOI:10.3390/rs11151813