Loading…

Proliferation, Migration and Invasion of Breast Cancer Cell Lines Are Inhibited by 1,5-Disubstituted Tetrazol-1,2,3-triazole Hybrids through Interaction with p53

The anticarcinogenic potential of a series of 1,5-disubstituted tetrazole-1,2,3-triazole hybrids (T-THs) was evaluated in the breast cancer (BC)-derived cell lines MCF-7 (ER+, PR+, and HER2−), CAMA-1 (ER+, PR+/−, and HER2−), SKBR-3 (ER+, PR+, and HER2+), and HCC1954 (ER+, PR+, and HER2+). The T-THs...

Full description

Saved in:
Bibliographic Details
Published in:Molecules (Basel, Switzerland) Switzerland), 2023-11, Vol.28 (22), p.7600
Main Authors: Moreno-Perea, Marisol, Suárez-Castro, Abel, Fraire-Soto, Ixamail, Sifuentes-Padilla, Jessica Lizbeth, Gutiérrez-Hernández, Rosalinda, Reyes-Estrada, Claudia Araceli, López-Hernández, Yamilé, Cortés-García, Carlos J, Chacón-García, Luis, Granados-López, Angelica Judith, López, Jesús Adrián
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The anticarcinogenic potential of a series of 1,5-disubstituted tetrazole-1,2,3-triazole hybrids (T-THs) was evaluated in the breast cancer (BC)-derived cell lines MCF-7 (ER+, PR+, and HER2−), CAMA-1 (ER+, PR+/−, and HER2−), SKBR-3 (ER+, PR+, and HER2+), and HCC1954 (ER+, PR+, and HER2+). The T-THs 7f, 7l, and 7g inhibited the proliferation of MCF-7 and CAMA-1, HCC1954, and SKBR-3 cells, respectively. The compounds with stronger effect in terms of migration and invasion inhibition were 7o, 7b, 7n, and 7k for the CAMA-1, MCF-7, HCC1954, and SKBR-3 cells respectively. Interestingly, these T-THs were the compounds with a fluorine present in their structures. To discover a possible target protein, a molecular docking analysis was performed for p53, p38, p58, and JNK1. The T-THs presented a higher affinity for p53, followed by JNK1, p58, and lastly p38. The best-predicted affinity for p53 showed interactions between the T-THs and both the DNA fragment and the protein. These results provide an opportunity for these compounds to be studied as potential drug candidates for breast cancer treatment.
ISSN:1420-3049
1420-3049
DOI:10.3390/molecules28227600