Loading…
Ex Vivo Evaluation of Ethosomes and Transethosomes Applied on Human Skin: A Comparative Study
In this study, the transdermal fate of vesicular nanosystems was investigated. Particularly, ethosomes based on phosphatidylcholine 0.9% / and transethosomes based on phosphatidylcholine 0.9 or 2.7% / plus polysorbate 80 0.3% / as an edge activator were prepared and characterized. The vesicle mean s...
Saved in:
Published in: | International journal of molecular sciences 2022-12, Vol.23 (23), p.15112 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c481t-3a73fe145f8c023982474bb7cca44798b533ec3a6403bf0e0e31b22e588f1fa43 |
---|---|
cites | cdi_FETCH-LOGICAL-c481t-3a73fe145f8c023982474bb7cca44798b533ec3a6403bf0e0e31b22e588f1fa43 |
container_end_page | |
container_issue | 23 |
container_start_page | 15112 |
container_title | International journal of molecular sciences |
container_volume | 23 |
creator | Esposito, Elisabetta Calderan, Laura Galvan, Andrea Cappellozza, Enrica Drechsler, Markus Mariani, Paolo Pepe, Alessia Sguizzato, Maddalena Vigato, Enrico Dalla Pozza, Edoardo Malatesta, Manuela |
description | In this study, the transdermal fate of vesicular nanosystems was investigated. Particularly, ethosomes based on phosphatidylcholine 0.9%
/
and transethosomes based on phosphatidylcholine 0.9 or 2.7%
/
plus polysorbate 80 0.3%
/
as an edge activator were prepared and characterized. The vesicle mean size, morphology and deformability were influenced by both phosphatidylcholine and polysorbate 80. Indeed, the mean diameters of ethosome were around 200 nm, while transethosome's mean diameters were 146 or 350 nm in the case of phosphatidylcholine 0.9 or 2.7%,
/
, respectively. The highest deformability was achieved by transethosomes based on phosphatidylcholine 0.9%,
/
. The three types of vesicular nanosystems were applied on explanted human skin maintained in a bioreactor. Transmission electron microscopy demonstrated that all vesicles were able to enter the skin, keeping their structural integrity. Notably, the vesicle penetration capability was influenced by their physical-chemical features. Indeed, ethosomes reached keratinocytes and even the dermis, phosphatidylcholine 0.9% transethosomes were found in keratinocytes and phosphatidylcholine 2.7% transethosomes were found only in corneocytes of the outer layer. These findings open interesting perspectives for a differentiated application of these vesicles for transdermal drug delivery as a function of the cutaneous pathology to be addressed. |
doi_str_mv | 10.3390/ijms232315112 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_945894cbb35d49c58472c6ff13079607</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_945894cbb35d49c58472c6ff13079607</doaj_id><sourcerecordid>2748550835</sourcerecordid><originalsourceid>FETCH-LOGICAL-c481t-3a73fe145f8c023982474bb7cca44798b533ec3a6403bf0e0e31b22e588f1fa43</originalsourceid><addsrcrecordid>eNpdks9rFDEUgAdRbK0evUrASy-jSV4ySTwIy7LaQsFDqzcJmUzSZp2ZjMnMYv97o1uXrqeE9z4-3q-qek3wOwCF34ftkClQIJwQ-qQ6JYzSGuNGPH30P6le5LzFuIBcPa9OoGFKMaCn1ffNL_Qt7CLa7Ey_mDnEEUWPNvNdzHFwGZmxQzfJjNkdQqtp6oPrUEEvlsGM6PpHGD-gFVrHYTKpSHYOXc9Ld_-yeuZNn92rh_es-vppc7O-qK--fL5cr65qyySZazACvCOMe2lLjUpSJljbCmsNY0LJlgM4C6ZhGFqPHXZAWkodl9ITbxicVZd7bxfNVk8pDCbd62iC_huI6VabNAfbO60Yl4rZtgXeMWW5ZILaxnsCWKgGi-L6uHdNSzu4zrpxTqY_kh5nxnCnb-NOKwENZbIIzh8EKf5cXJ71ELJ1fW9GF5esqSjtYEUpFPTtf-g2LmksoyoUk5xjCbxQ9Z6yKeacnD8UQ7D-cwT66AgK_-ZxBwf639bhN_yRrEg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2748550835</pqid></control><display><type>article</type><title>Ex Vivo Evaluation of Ethosomes and Transethosomes Applied on Human Skin: A Comparative Study</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Esposito, Elisabetta ; Calderan, Laura ; Galvan, Andrea ; Cappellozza, Enrica ; Drechsler, Markus ; Mariani, Paolo ; Pepe, Alessia ; Sguizzato, Maddalena ; Vigato, Enrico ; Dalla Pozza, Edoardo ; Malatesta, Manuela</creator><creatorcontrib>Esposito, Elisabetta ; Calderan, Laura ; Galvan, Andrea ; Cappellozza, Enrica ; Drechsler, Markus ; Mariani, Paolo ; Pepe, Alessia ; Sguizzato, Maddalena ; Vigato, Enrico ; Dalla Pozza, Edoardo ; Malatesta, Manuela</creatorcontrib><description>In this study, the transdermal fate of vesicular nanosystems was investigated. Particularly, ethosomes based on phosphatidylcholine 0.9%
/
and transethosomes based on phosphatidylcholine 0.9 or 2.7%
/
plus polysorbate 80 0.3%
/
as an edge activator were prepared and characterized. The vesicle mean size, morphology and deformability were influenced by both phosphatidylcholine and polysorbate 80. Indeed, the mean diameters of ethosome were around 200 nm, while transethosome's mean diameters were 146 or 350 nm in the case of phosphatidylcholine 0.9 or 2.7%,
/
, respectively. The highest deformability was achieved by transethosomes based on phosphatidylcholine 0.9%,
/
. The three types of vesicular nanosystems were applied on explanted human skin maintained in a bioreactor. Transmission electron microscopy demonstrated that all vesicles were able to enter the skin, keeping their structural integrity. Notably, the vesicle penetration capability was influenced by their physical-chemical features. Indeed, ethosomes reached keratinocytes and even the dermis, phosphatidylcholine 0.9% transethosomes were found in keratinocytes and phosphatidylcholine 2.7% transethosomes were found only in corneocytes of the outer layer. These findings open interesting perspectives for a differentiated application of these vesicles for transdermal drug delivery as a function of the cutaneous pathology to be addressed.</description><identifier>ISSN: 1422-0067</identifier><identifier>ISSN: 1661-6596</identifier><identifier>EISSN: 1422-0067</identifier><identifier>DOI: 10.3390/ijms232315112</identifier><identifier>PMID: 36499432</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Administration, Cutaneous ; bioreactor ; Bioreactors ; Comparative studies ; cryogenic transmission electron microscopy ; Deformability ; Dermis ; Drug Carriers - chemistry ; Drug delivery ; Drugs ; Ethanol ; Ethosomes ; explanted skin ; Humans ; Investigations ; Keratinocytes ; Lecithin ; Liposomes - chemistry ; Microscopy ; Phosphatidylcholine ; Phosphatidylcholines - metabolism ; Polyoxyethylene sorbitan monooleate ; Skin ; Skin - metabolism ; Skin Absorption ; Surfactants ; Systems stability ; transethosomes ; Transmission electron microscopy ; Vesicles ; X-ray diffraction</subject><ispartof>International journal of molecular sciences, 2022-12, Vol.23 (23), p.15112</ispartof><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 by the authors. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c481t-3a73fe145f8c023982474bb7cca44798b533ec3a6403bf0e0e31b22e588f1fa43</citedby><cites>FETCH-LOGICAL-c481t-3a73fe145f8c023982474bb7cca44798b533ec3a6403bf0e0e31b22e588f1fa43</cites><orcidid>0000-0001-8473-9918 ; 0000-0003-4293-1009 ; 0000-0002-8416-3629 ; 0000-0002-2100-2043 ; 0000-0002-8470-3058 ; 0000-0002-7739-4488 ; 0000-0001-8196-9232 ; 0000-0001-7192-7821</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2748550835/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2748550835?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36499432$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Esposito, Elisabetta</creatorcontrib><creatorcontrib>Calderan, Laura</creatorcontrib><creatorcontrib>Galvan, Andrea</creatorcontrib><creatorcontrib>Cappellozza, Enrica</creatorcontrib><creatorcontrib>Drechsler, Markus</creatorcontrib><creatorcontrib>Mariani, Paolo</creatorcontrib><creatorcontrib>Pepe, Alessia</creatorcontrib><creatorcontrib>Sguizzato, Maddalena</creatorcontrib><creatorcontrib>Vigato, Enrico</creatorcontrib><creatorcontrib>Dalla Pozza, Edoardo</creatorcontrib><creatorcontrib>Malatesta, Manuela</creatorcontrib><title>Ex Vivo Evaluation of Ethosomes and Transethosomes Applied on Human Skin: A Comparative Study</title><title>International journal of molecular sciences</title><addtitle>Int J Mol Sci</addtitle><description>In this study, the transdermal fate of vesicular nanosystems was investigated. Particularly, ethosomes based on phosphatidylcholine 0.9%
/
and transethosomes based on phosphatidylcholine 0.9 or 2.7%
/
plus polysorbate 80 0.3%
/
as an edge activator were prepared and characterized. The vesicle mean size, morphology and deformability were influenced by both phosphatidylcholine and polysorbate 80. Indeed, the mean diameters of ethosome were around 200 nm, while transethosome's mean diameters were 146 or 350 nm in the case of phosphatidylcholine 0.9 or 2.7%,
/
, respectively. The highest deformability was achieved by transethosomes based on phosphatidylcholine 0.9%,
/
. The three types of vesicular nanosystems were applied on explanted human skin maintained in a bioreactor. Transmission electron microscopy demonstrated that all vesicles were able to enter the skin, keeping their structural integrity. Notably, the vesicle penetration capability was influenced by their physical-chemical features. Indeed, ethosomes reached keratinocytes and even the dermis, phosphatidylcholine 0.9% transethosomes were found in keratinocytes and phosphatidylcholine 2.7% transethosomes were found only in corneocytes of the outer layer. These findings open interesting perspectives for a differentiated application of these vesicles for transdermal drug delivery as a function of the cutaneous pathology to be addressed.</description><subject>Administration, Cutaneous</subject><subject>bioreactor</subject><subject>Bioreactors</subject><subject>Comparative studies</subject><subject>cryogenic transmission electron microscopy</subject><subject>Deformability</subject><subject>Dermis</subject><subject>Drug Carriers - chemistry</subject><subject>Drug delivery</subject><subject>Drugs</subject><subject>Ethanol</subject><subject>Ethosomes</subject><subject>explanted skin</subject><subject>Humans</subject><subject>Investigations</subject><subject>Keratinocytes</subject><subject>Lecithin</subject><subject>Liposomes - chemistry</subject><subject>Microscopy</subject><subject>Phosphatidylcholine</subject><subject>Phosphatidylcholines - metabolism</subject><subject>Polyoxyethylene sorbitan monooleate</subject><subject>Skin</subject><subject>Skin - metabolism</subject><subject>Skin Absorption</subject><subject>Surfactants</subject><subject>Systems stability</subject><subject>transethosomes</subject><subject>Transmission electron microscopy</subject><subject>Vesicles</subject><subject>X-ray diffraction</subject><issn>1422-0067</issn><issn>1661-6596</issn><issn>1422-0067</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdks9rFDEUgAdRbK0evUrASy-jSV4ySTwIy7LaQsFDqzcJmUzSZp2ZjMnMYv97o1uXrqeE9z4-3q-qek3wOwCF34ftkClQIJwQ-qQ6JYzSGuNGPH30P6le5LzFuIBcPa9OoGFKMaCn1ffNL_Qt7CLa7Ey_mDnEEUWPNvNdzHFwGZmxQzfJjNkdQqtp6oPrUEEvlsGM6PpHGD-gFVrHYTKpSHYOXc9Ld_-yeuZNn92rh_es-vppc7O-qK--fL5cr65qyySZazACvCOMe2lLjUpSJljbCmsNY0LJlgM4C6ZhGFqPHXZAWkodl9ITbxicVZd7bxfNVk8pDCbd62iC_huI6VabNAfbO60Yl4rZtgXeMWW5ZILaxnsCWKgGi-L6uHdNSzu4zrpxTqY_kh5nxnCnb-NOKwENZbIIzh8EKf5cXJ71ELJ1fW9GF5esqSjtYEUpFPTtf-g2LmksoyoUk5xjCbxQ9Z6yKeacnD8UQ7D-cwT66AgK_-ZxBwf639bhN_yRrEg</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>Esposito, Elisabetta</creator><creator>Calderan, Laura</creator><creator>Galvan, Andrea</creator><creator>Cappellozza, Enrica</creator><creator>Drechsler, Markus</creator><creator>Mariani, Paolo</creator><creator>Pepe, Alessia</creator><creator>Sguizzato, Maddalena</creator><creator>Vigato, Enrico</creator><creator>Dalla Pozza, Edoardo</creator><creator>Malatesta, Manuela</creator><general>MDPI AG</general><general>MDPI</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-8473-9918</orcidid><orcidid>https://orcid.org/0000-0003-4293-1009</orcidid><orcidid>https://orcid.org/0000-0002-8416-3629</orcidid><orcidid>https://orcid.org/0000-0002-2100-2043</orcidid><orcidid>https://orcid.org/0000-0002-8470-3058</orcidid><orcidid>https://orcid.org/0000-0002-7739-4488</orcidid><orcidid>https://orcid.org/0000-0001-8196-9232</orcidid><orcidid>https://orcid.org/0000-0001-7192-7821</orcidid></search><sort><creationdate>20221201</creationdate><title>Ex Vivo Evaluation of Ethosomes and Transethosomes Applied on Human Skin: A Comparative Study</title><author>Esposito, Elisabetta ; Calderan, Laura ; Galvan, Andrea ; Cappellozza, Enrica ; Drechsler, Markus ; Mariani, Paolo ; Pepe, Alessia ; Sguizzato, Maddalena ; Vigato, Enrico ; Dalla Pozza, Edoardo ; Malatesta, Manuela</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c481t-3a73fe145f8c023982474bb7cca44798b533ec3a6403bf0e0e31b22e588f1fa43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Administration, Cutaneous</topic><topic>bioreactor</topic><topic>Bioreactors</topic><topic>Comparative studies</topic><topic>cryogenic transmission electron microscopy</topic><topic>Deformability</topic><topic>Dermis</topic><topic>Drug Carriers - chemistry</topic><topic>Drug delivery</topic><topic>Drugs</topic><topic>Ethanol</topic><topic>Ethosomes</topic><topic>explanted skin</topic><topic>Humans</topic><topic>Investigations</topic><topic>Keratinocytes</topic><topic>Lecithin</topic><topic>Liposomes - chemistry</topic><topic>Microscopy</topic><topic>Phosphatidylcholine</topic><topic>Phosphatidylcholines - metabolism</topic><topic>Polyoxyethylene sorbitan monooleate</topic><topic>Skin</topic><topic>Skin - metabolism</topic><topic>Skin Absorption</topic><topic>Surfactants</topic><topic>Systems stability</topic><topic>transethosomes</topic><topic>Transmission electron microscopy</topic><topic>Vesicles</topic><topic>X-ray diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Esposito, Elisabetta</creatorcontrib><creatorcontrib>Calderan, Laura</creatorcontrib><creatorcontrib>Galvan, Andrea</creatorcontrib><creatorcontrib>Cappellozza, Enrica</creatorcontrib><creatorcontrib>Drechsler, Markus</creatorcontrib><creatorcontrib>Mariani, Paolo</creatorcontrib><creatorcontrib>Pepe, Alessia</creatorcontrib><creatorcontrib>Sguizzato, Maddalena</creatorcontrib><creatorcontrib>Vigato, Enrico</creatorcontrib><creatorcontrib>Dalla Pozza, Edoardo</creatorcontrib><creatorcontrib>Malatesta, Manuela</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Research Library</collection><collection>Research Library (Corporate)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>International journal of molecular sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Esposito, Elisabetta</au><au>Calderan, Laura</au><au>Galvan, Andrea</au><au>Cappellozza, Enrica</au><au>Drechsler, Markus</au><au>Mariani, Paolo</au><au>Pepe, Alessia</au><au>Sguizzato, Maddalena</au><au>Vigato, Enrico</au><au>Dalla Pozza, Edoardo</au><au>Malatesta, Manuela</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ex Vivo Evaluation of Ethosomes and Transethosomes Applied on Human Skin: A Comparative Study</atitle><jtitle>International journal of molecular sciences</jtitle><addtitle>Int J Mol Sci</addtitle><date>2022-12-01</date><risdate>2022</risdate><volume>23</volume><issue>23</issue><spage>15112</spage><pages>15112-</pages><issn>1422-0067</issn><issn>1661-6596</issn><eissn>1422-0067</eissn><abstract>In this study, the transdermal fate of vesicular nanosystems was investigated. Particularly, ethosomes based on phosphatidylcholine 0.9%
/
and transethosomes based on phosphatidylcholine 0.9 or 2.7%
/
plus polysorbate 80 0.3%
/
as an edge activator were prepared and characterized. The vesicle mean size, morphology and deformability were influenced by both phosphatidylcholine and polysorbate 80. Indeed, the mean diameters of ethosome were around 200 nm, while transethosome's mean diameters were 146 or 350 nm in the case of phosphatidylcholine 0.9 or 2.7%,
/
, respectively. The highest deformability was achieved by transethosomes based on phosphatidylcholine 0.9%,
/
. The three types of vesicular nanosystems were applied on explanted human skin maintained in a bioreactor. Transmission electron microscopy demonstrated that all vesicles were able to enter the skin, keeping their structural integrity. Notably, the vesicle penetration capability was influenced by their physical-chemical features. Indeed, ethosomes reached keratinocytes and even the dermis, phosphatidylcholine 0.9% transethosomes were found in keratinocytes and phosphatidylcholine 2.7% transethosomes were found only in corneocytes of the outer layer. These findings open interesting perspectives for a differentiated application of these vesicles for transdermal drug delivery as a function of the cutaneous pathology to be addressed.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>36499432</pmid><doi>10.3390/ijms232315112</doi><orcidid>https://orcid.org/0000-0001-8473-9918</orcidid><orcidid>https://orcid.org/0000-0003-4293-1009</orcidid><orcidid>https://orcid.org/0000-0002-8416-3629</orcidid><orcidid>https://orcid.org/0000-0002-2100-2043</orcidid><orcidid>https://orcid.org/0000-0002-8470-3058</orcidid><orcidid>https://orcid.org/0000-0002-7739-4488</orcidid><orcidid>https://orcid.org/0000-0001-8196-9232</orcidid><orcidid>https://orcid.org/0000-0001-7192-7821</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1422-0067 |
ispartof | International journal of molecular sciences, 2022-12, Vol.23 (23), p.15112 |
issn | 1422-0067 1661-6596 1422-0067 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_945894cbb35d49c58472c6ff13079607 |
source | Publicly Available Content Database; PubMed Central |
subjects | Administration, Cutaneous bioreactor Bioreactors Comparative studies cryogenic transmission electron microscopy Deformability Dermis Drug Carriers - chemistry Drug delivery Drugs Ethanol Ethosomes explanted skin Humans Investigations Keratinocytes Lecithin Liposomes - chemistry Microscopy Phosphatidylcholine Phosphatidylcholines - metabolism Polyoxyethylene sorbitan monooleate Skin Skin - metabolism Skin Absorption Surfactants Systems stability transethosomes Transmission electron microscopy Vesicles X-ray diffraction |
title | Ex Vivo Evaluation of Ethosomes and Transethosomes Applied on Human Skin: A Comparative Study |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T21%3A45%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ex%20Vivo%20Evaluation%20of%20Ethosomes%20and%20Transethosomes%20Applied%20on%20Human%20Skin:%20A%20Comparative%20Study&rft.jtitle=International%20journal%20of%20molecular%20sciences&rft.au=Esposito,%20Elisabetta&rft.date=2022-12-01&rft.volume=23&rft.issue=23&rft.spage=15112&rft.pages=15112-&rft.issn=1422-0067&rft.eissn=1422-0067&rft_id=info:doi/10.3390/ijms232315112&rft_dat=%3Cproquest_doaj_%3E2748550835%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c481t-3a73fe145f8c023982474bb7cca44798b533ec3a6403bf0e0e31b22e588f1fa43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2748550835&rft_id=info:pmid/36499432&rfr_iscdi=true |