Loading…
Design of an Origami Crawling Robot with Reconfigurable Sliding Feet
This paper presents a novel reconfigurable crawling robot based on an origami twisted tower structure. Compared with other origami structures, the twisted tower can achieve extension, contraction, and bending motions as the flexible body parts in robotic designs. The kinematics of a one-layer twiste...
Saved in:
Published in: | Applied sciences 2022-03, Vol.12 (5), p.2520 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper presents a novel reconfigurable crawling robot based on an origami twisted tower structure. Compared with other origami structures, the twisted tower can achieve extension, contraction, and bending motions as the flexible body parts in robotic designs. The kinematics of a one-layer twisted tower were analyzed with rotation and bending angles. The mechanical properties of the one-layer, two-layer, and four-layer twisted towers were compared with compression experiments. A rope-motor-driven crawling robot was designed to realize forward, backward, left-turning, and right-turning motions. Two types of crawling robot with specific sliding feet were developed to adapt to different ground conditions: one made of rubber, and the other embedded with an electromagnet. The experimental results show that the proposed robots can move at an average forward speed of 0.48 cm/s on a wooden desk, and at 0.52 cm/s forward speed or 0.65 cm/s backward speed on an iron platform. |
---|---|
ISSN: | 2076-3417 2076-3417 |
DOI: | 10.3390/app12052520 |