Loading…

Design of an Origami Crawling Robot with Reconfigurable Sliding Feet

This paper presents a novel reconfigurable crawling robot based on an origami twisted tower structure. Compared with other origami structures, the twisted tower can achieve extension, contraction, and bending motions as the flexible body parts in robotic designs. The kinematics of a one-layer twiste...

Full description

Saved in:
Bibliographic Details
Published in:Applied sciences 2022-03, Vol.12 (5), p.2520
Main Authors: Fei, Fei, Leng, Ying, Xian, Sifan, Dong, Wende, Yin, Kuiying, Zhang, Guanglie
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper presents a novel reconfigurable crawling robot based on an origami twisted tower structure. Compared with other origami structures, the twisted tower can achieve extension, contraction, and bending motions as the flexible body parts in robotic designs. The kinematics of a one-layer twisted tower were analyzed with rotation and bending angles. The mechanical properties of the one-layer, two-layer, and four-layer twisted towers were compared with compression experiments. A rope-motor-driven crawling robot was designed to realize forward, backward, left-turning, and right-turning motions. Two types of crawling robot with specific sliding feet were developed to adapt to different ground conditions: one made of rubber, and the other embedded with an electromagnet. The experimental results show that the proposed robots can move at an average forward speed of 0.48 cm/s on a wooden desk, and at 0.52 cm/s forward speed or 0.65 cm/s backward speed on an iron platform.
ISSN:2076-3417
2076-3417
DOI:10.3390/app12052520