Loading…

Applications of the Delay Stochastic Simulation Algorithm (DSSA) in Mathematical Epidemiology

The calculation of the probability of a minor outbreak is crucial in analyzing a stochastic epidemic model. For stochastic epidemic models with fixed delays, the linear chain trick is applied to transform the delayed models into a family of ODE models with increasing shape parameters. We then prove...

Full description

Saved in:
Bibliographic Details
Published in:Mathematics (Basel) 2022-10, Vol.10 (20), p.3759
Main Author: Bai, Fan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The calculation of the probability of a minor outbreak is crucial in analyzing a stochastic epidemic model. For stochastic epidemic models with fixed delays, the linear chain trick is applied to transform the delayed models into a family of ODE models with increasing shape parameters. We then prove that the well-established results on the probability of a minor outbreak for continuous-time Markov chain (CTMC) epidemic models also hold for the stochastic epidemic models with fixed delays. All theoretical results are verified by numerical simulations implemented by the delay stochastic simulation algorithm (DSSA) in Python. It is shown that DSSA is able to generate exact realizations for underlying delayed models in the context of mathematical epidemiology, and therefore, provides insights into the effect of delays during the outbreak phases of epidemics.
ISSN:2227-7390
2227-7390
DOI:10.3390/math10203759