Loading…
Detection of freezing of gait in Parkinson disease: preliminary results
Freezing of gait (FOG) is a common symptom in Parkinsonism, which affects the gait pattern and is associated to a fall risk. Automatized FOG episode detection would allow systematic assessment of patient state and objective evaluation of the clinical effects of treatments. Techniques have been propo...
Saved in:
Published in: | Sensors (Basel, Switzerland) Switzerland), 2014-04, Vol.14 (4), p.6819-6827 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c677t-2d6fc9476fa50ca0725789c80c5db4e06904bfa204706322443fbf86703fda543 |
---|---|
cites | cdi_FETCH-LOGICAL-c677t-2d6fc9476fa50ca0725789c80c5db4e06904bfa204706322443fbf86703fda543 |
container_end_page | 6827 |
container_issue | 4 |
container_start_page | 6819 |
container_title | Sensors (Basel, Switzerland) |
container_volume | 14 |
creator | Coste, Christine Azevedo Sijobert, Benoît Pissard-Gibollet, Roger Pasquier, Maud Espiau, Bernard Geny, Christian |
description | Freezing of gait (FOG) is a common symptom in Parkinsonism, which affects the gait pattern and is associated to a fall risk. Automatized FOG episode detection would allow systematic assessment of patient state and objective evaluation of the clinical effects of treatments. Techniques have been proposed in the literature to identify FOG episodes based on the frequency properties of inertial sensor signals. Our objective here is to adapt and extend these FOG detectors in order to include other associated gait pattern changes, like festination. The proposed approach is based on a single wireless inertial sensor placed on the patient's lower limbs. The preliminary experimental results show that existing frequency-based freezing detectors are not sufficient to detect all FOG and festination episodes and that the observation of some gait parameters such as stride length and cadence are valuable inputs to anticipate the occurrence of upcoming FOG events. |
doi_str_mv | 10.3390/s140406819 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_946a8bb1a1ba464390a192f164be088d</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_946a8bb1a1ba464390a192f164be088d</doaj_id><sourcerecordid>1517880562</sourcerecordid><originalsourceid>FETCH-LOGICAL-c677t-2d6fc9476fa50ca0725789c80c5db4e06904bfa204706322443fbf86703fda543</originalsourceid><addsrcrecordid>eNqFkk1PFTEUhidGI4hu_AFmEjcGcvG0PdMPFyYEEUhuogtdN51Oe-l1ZnppZ0jk11u8iMCGVU_ap09PTt-qekvgkDEFHzNBQOCSqGfVLkGKC0kpPL9X71Svcl4DUMaYfFntUBQIQHC3Ov3iJmenEMc6-ton567DuLqpVyZMdRjr7yb9CmMuQBeyM9l9qjfJ9WEIo0m_6-Ty3E_5dfXCmz67N7frXvXz68mP47PF8tvp-fHRcmG5ENOCdtxbhYJ704A1IGgjpLISbNO16IArwNYbCiiAM0oRmW-95AKY70yDbK8633q7aNZ6k8JQmtDRBP13I6aVNmkKtndaITeybYkhrUGOZVKGKOoJx9aBlF1xfd66NnM7uM66cUqmfyB9eDKGC72KVxqBKs6hCA62gotH186OlroPaRg0EMokEnFFCv3h9rkUL2eXJz2EbF3fm9HFOWsiiFSUIzZPow0RUkLDaUHfP0LXcU5j-YNCMVWSQUAVan9L2RRzTs7ftUtA34RI_w9Rgd_dn8sd-i817A868r7O</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1539404109</pqid></control><display><type>article</type><title>Detection of freezing of gait in Parkinson disease: preliminary results</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Coste, Christine Azevedo ; Sijobert, Benoît ; Pissard-Gibollet, Roger ; Pasquier, Maud ; Espiau, Bernard ; Geny, Christian</creator><creatorcontrib>Coste, Christine Azevedo ; Sijobert, Benoît ; Pissard-Gibollet, Roger ; Pasquier, Maud ; Espiau, Bernard ; Geny, Christian</creatorcontrib><description>Freezing of gait (FOG) is a common symptom in Parkinsonism, which affects the gait pattern and is associated to a fall risk. Automatized FOG episode detection would allow systematic assessment of patient state and objective evaluation of the clinical effects of treatments. Techniques have been proposed in the literature to identify FOG episodes based on the frequency properties of inertial sensor signals. Our objective here is to adapt and extend these FOG detectors in order to include other associated gait pattern changes, like festination. The proposed approach is based on a single wireless inertial sensor placed on the patient's lower limbs. The preliminary experimental results show that existing frequency-based freezing detectors are not sufficient to detect all FOG and festination episodes and that the observation of some gait parameters such as stride length and cadence are valuable inputs to anticipate the occurrence of upcoming FOG events.</description><identifier>ISSN: 1424-8220</identifier><identifier>EISSN: 1424-8220</identifier><identifier>DOI: 10.3390/s140406819</identifier><identifier>PMID: 24740014</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Biotechnology ; Computer Science ; Detectors ; Falls ; festination ; Fog ; Freezing ; freezing of gait (FOG) ; Freezing Reaction, Cataleptic ; Gait ; gait parameters ; Humans ; Hypotheses ; Inertial ; inertial measurement units ; Parkinson disease ; Parkinson Disease - diagnosis ; Parkinson Disease - physiopathology ; Parkinson's disease ; Patients ; Sensors ; Signal Processing, Computer-Assisted ; Wireless Technology</subject><ispartof>Sensors (Basel, Switzerland), 2014-04, Vol.14 (4), p.6819-6827</ispartof><rights>Copyright MDPI AG 2014</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>2014 by the authors; licensee MDPI, Basel, Switzerland. 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c677t-2d6fc9476fa50ca0725789c80c5db4e06904bfa204706322443fbf86703fda543</citedby><cites>FETCH-LOGICAL-c677t-2d6fc9476fa50ca0725789c80c5db4e06904bfa204706322443fbf86703fda543</cites><orcidid>0000-0001-5204-5938 ; 0000-0001-8045-3752 ; 0000-0002-7379-8004</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1539404109/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1539404109?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24740014$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal-lirmm.ccsd.cnrs.fr/lirmm-01238417$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Coste, Christine Azevedo</creatorcontrib><creatorcontrib>Sijobert, Benoît</creatorcontrib><creatorcontrib>Pissard-Gibollet, Roger</creatorcontrib><creatorcontrib>Pasquier, Maud</creatorcontrib><creatorcontrib>Espiau, Bernard</creatorcontrib><creatorcontrib>Geny, Christian</creatorcontrib><title>Detection of freezing of gait in Parkinson disease: preliminary results</title><title>Sensors (Basel, Switzerland)</title><addtitle>Sensors (Basel)</addtitle><description>Freezing of gait (FOG) is a common symptom in Parkinsonism, which affects the gait pattern and is associated to a fall risk. Automatized FOG episode detection would allow systematic assessment of patient state and objective evaluation of the clinical effects of treatments. Techniques have been proposed in the literature to identify FOG episodes based on the frequency properties of inertial sensor signals. Our objective here is to adapt and extend these FOG detectors in order to include other associated gait pattern changes, like festination. The proposed approach is based on a single wireless inertial sensor placed on the patient's lower limbs. The preliminary experimental results show that existing frequency-based freezing detectors are not sufficient to detect all FOG and festination episodes and that the observation of some gait parameters such as stride length and cadence are valuable inputs to anticipate the occurrence of upcoming FOG events.</description><subject>Biotechnology</subject><subject>Computer Science</subject><subject>Detectors</subject><subject>Falls</subject><subject>festination</subject><subject>Fog</subject><subject>Freezing</subject><subject>freezing of gait (FOG)</subject><subject>Freezing Reaction, Cataleptic</subject><subject>Gait</subject><subject>gait parameters</subject><subject>Humans</subject><subject>Hypotheses</subject><subject>Inertial</subject><subject>inertial measurement units</subject><subject>Parkinson disease</subject><subject>Parkinson Disease - diagnosis</subject><subject>Parkinson Disease - physiopathology</subject><subject>Parkinson's disease</subject><subject>Patients</subject><subject>Sensors</subject><subject>Signal Processing, Computer-Assisted</subject><subject>Wireless Technology</subject><issn>1424-8220</issn><issn>1424-8220</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqFkk1PFTEUhidGI4hu_AFmEjcGcvG0PdMPFyYEEUhuogtdN51Oe-l1ZnppZ0jk11u8iMCGVU_ap09PTt-qekvgkDEFHzNBQOCSqGfVLkGKC0kpPL9X71Svcl4DUMaYfFntUBQIQHC3Ov3iJmenEMc6-ton567DuLqpVyZMdRjr7yb9CmMuQBeyM9l9qjfJ9WEIo0m_6-Ty3E_5dfXCmz67N7frXvXz68mP47PF8tvp-fHRcmG5ENOCdtxbhYJ704A1IGgjpLISbNO16IArwNYbCiiAM0oRmW-95AKY70yDbK8633q7aNZ6k8JQmtDRBP13I6aVNmkKtndaITeybYkhrUGOZVKGKOoJx9aBlF1xfd66NnM7uM66cUqmfyB9eDKGC72KVxqBKs6hCA62gotH186OlroPaRg0EMokEnFFCv3h9rkUL2eXJz2EbF3fm9HFOWsiiFSUIzZPow0RUkLDaUHfP0LXcU5j-YNCMVWSQUAVan9L2RRzTs7ftUtA34RI_w9Rgd_dn8sd-i817A868r7O</recordid><startdate>20140415</startdate><enddate>20140415</enddate><creator>Coste, Christine Azevedo</creator><creator>Sijobert, Benoît</creator><creator>Pissard-Gibollet, Roger</creator><creator>Pasquier, Maud</creator><creator>Espiau, Bernard</creator><creator>Geny, Christian</creator><general>MDPI AG</general><general>MDPI</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>7SP</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-5204-5938</orcidid><orcidid>https://orcid.org/0000-0001-8045-3752</orcidid><orcidid>https://orcid.org/0000-0002-7379-8004</orcidid></search><sort><creationdate>20140415</creationdate><title>Detection of freezing of gait in Parkinson disease: preliminary results</title><author>Coste, Christine Azevedo ; Sijobert, Benoît ; Pissard-Gibollet, Roger ; Pasquier, Maud ; Espiau, Bernard ; Geny, Christian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c677t-2d6fc9476fa50ca0725789c80c5db4e06904bfa204706322443fbf86703fda543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Biotechnology</topic><topic>Computer Science</topic><topic>Detectors</topic><topic>Falls</topic><topic>festination</topic><topic>Fog</topic><topic>Freezing</topic><topic>freezing of gait (FOG)</topic><topic>Freezing Reaction, Cataleptic</topic><topic>Gait</topic><topic>gait parameters</topic><topic>Humans</topic><topic>Hypotheses</topic><topic>Inertial</topic><topic>inertial measurement units</topic><topic>Parkinson disease</topic><topic>Parkinson Disease - diagnosis</topic><topic>Parkinson Disease - physiopathology</topic><topic>Parkinson's disease</topic><topic>Patients</topic><topic>Sensors</topic><topic>Signal Processing, Computer-Assisted</topic><topic>Wireless Technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Coste, Christine Azevedo</creatorcontrib><creatorcontrib>Sijobert, Benoît</creatorcontrib><creatorcontrib>Pissard-Gibollet, Roger</creatorcontrib><creatorcontrib>Pasquier, Maud</creatorcontrib><creatorcontrib>Espiau, Bernard</creatorcontrib><creatorcontrib>Geny, Christian</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Sensors (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Coste, Christine Azevedo</au><au>Sijobert, Benoît</au><au>Pissard-Gibollet, Roger</au><au>Pasquier, Maud</au><au>Espiau, Bernard</au><au>Geny, Christian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Detection of freezing of gait in Parkinson disease: preliminary results</atitle><jtitle>Sensors (Basel, Switzerland)</jtitle><addtitle>Sensors (Basel)</addtitle><date>2014-04-15</date><risdate>2014</risdate><volume>14</volume><issue>4</issue><spage>6819</spage><epage>6827</epage><pages>6819-6827</pages><issn>1424-8220</issn><eissn>1424-8220</eissn><abstract>Freezing of gait (FOG) is a common symptom in Parkinsonism, which affects the gait pattern and is associated to a fall risk. Automatized FOG episode detection would allow systematic assessment of patient state and objective evaluation of the clinical effects of treatments. Techniques have been proposed in the literature to identify FOG episodes based on the frequency properties of inertial sensor signals. Our objective here is to adapt and extend these FOG detectors in order to include other associated gait pattern changes, like festination. The proposed approach is based on a single wireless inertial sensor placed on the patient's lower limbs. The preliminary experimental results show that existing frequency-based freezing detectors are not sufficient to detect all FOG and festination episodes and that the observation of some gait parameters such as stride length and cadence are valuable inputs to anticipate the occurrence of upcoming FOG events.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>24740014</pmid><doi>10.3390/s140406819</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-5204-5938</orcidid><orcidid>https://orcid.org/0000-0001-8045-3752</orcidid><orcidid>https://orcid.org/0000-0002-7379-8004</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1424-8220 |
ispartof | Sensors (Basel, Switzerland), 2014-04, Vol.14 (4), p.6819-6827 |
issn | 1424-8220 1424-8220 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_946a8bb1a1ba464390a192f164be088d |
source | Publicly Available Content Database; PubMed Central |
subjects | Biotechnology Computer Science Detectors Falls festination Fog Freezing freezing of gait (FOG) Freezing Reaction, Cataleptic Gait gait parameters Humans Hypotheses Inertial inertial measurement units Parkinson disease Parkinson Disease - diagnosis Parkinson Disease - physiopathology Parkinson's disease Patients Sensors Signal Processing, Computer-Assisted Wireless Technology |
title | Detection of freezing of gait in Parkinson disease: preliminary results |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T21%3A20%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Detection%20of%20freezing%20of%20gait%20in%20Parkinson%20disease:%20preliminary%20results&rft.jtitle=Sensors%20(Basel,%20Switzerland)&rft.au=Coste,%20Christine%20Azevedo&rft.date=2014-04-15&rft.volume=14&rft.issue=4&rft.spage=6819&rft.epage=6827&rft.pages=6819-6827&rft.issn=1424-8220&rft.eissn=1424-8220&rft_id=info:doi/10.3390/s140406819&rft_dat=%3Cproquest_doaj_%3E1517880562%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c677t-2d6fc9476fa50ca0725789c80c5db4e06904bfa204706322443fbf86703fda543%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1539404109&rft_id=info:pmid/24740014&rfr_iscdi=true |