Loading…

Numerical investigations of convection heat transfer in a thermal source-embedded porous medium via a lattice Boltzmann method

Convection heat transfer (CHT) in porous media founds broad significance in the applications of solar collectors, geothermal systems, and biological sciences. In this work, the natural CHT in a porous medium embedded with a rectangular thermal source at the bottom is numerically solved via the latti...

Full description

Saved in:
Bibliographic Details
Published in:Case studies in thermal engineering 2022-02, Vol.30, p.101758, Article 101758
Main Authors: Wang, Cun-Hai, Liu, Zi-Yang, Jiang, Ze-Yi, Zhang, Xin-Xin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c414t-1cda988e0491ccf6bb29ddd818933c84b93d714b5679834014b225f95a801f773
cites cdi_FETCH-LOGICAL-c414t-1cda988e0491ccf6bb29ddd818933c84b93d714b5679834014b225f95a801f773
container_end_page
container_issue
container_start_page 101758
container_title Case studies in thermal engineering
container_volume 30
creator Wang, Cun-Hai
Liu, Zi-Yang
Jiang, Ze-Yi
Zhang, Xin-Xin
description Convection heat transfer (CHT) in porous media founds broad significance in the applications of solar collectors, geothermal systems, and biological sciences. In this work, the natural CHT in a porous medium embedded with a rectangular thermal source at the bottom is numerically solved via the lattice Boltzmann method (LBM). The generalized Brinkman-Forchheimer-extended-Darcy model is applied to describe the momentum equation. The numerical solutions obtained by the LBM are verified against the experimental data for the correctness validation of the presented lattice Boltzmann model. Effects of the Darcy number (Da), medium porosity (ε), size of the thermal source, and the aspect ratio of the thermal source on the temperature- and flow-field in the porous medium are systematically investigated. Results show that the increase of Da remarkably enhances the heat exchange and changes the heat transfer mode from conduction to convection. The existence of the thermal source sidewall has a suppression effect on the heat exchange along the top wall of the thermal source, and this suppression effect is pronounced when the CHT is weak.
doi_str_mv 10.1016/j.csite.2022.101758
format article
fullrecord <record><control><sourceid>elsevier_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_94758bd2735045a2b45eeecca44f2e43</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S2214157X22000041</els_id><doaj_id>oai_doaj_org_article_94758bd2735045a2b45eeecca44f2e43</doaj_id><sourcerecordid>S2214157X22000041</sourcerecordid><originalsourceid>FETCH-LOGICAL-c414t-1cda988e0491ccf6bb29ddd818933c84b93d714b5679834014b225f95a801f773</originalsourceid><addsrcrecordid>eNp9UctOwzAQjBBIIOgXcPEPpPiVxjlwAMSjEoILSNysjb2hrpK4st1KcODbcVuEOHHyejwzWs8UxTmjU0bZ7GI5NdElnHLK-RapK3VQnHDOZMmq-u3wz3xcTGJcUppJQjEpT4qvp_WAwRnoiRs3GJN7h-T8GInviPEZMtsrWSAkkgKMscOQqQRIWmAYsi76dTBY4tCitWjJyge_jmRA69YD2TjI3B5ScgbJte_T5wDjmJ_Twtuz4qiDPuLk5zwtXu9uX24eysfn-_nN1WNpJJOpZMZCoxRS2TBjulnb8sZaq5hqhDBKto2wNZNtNasbJSTNI-dV11SgKOvqWpwW872v9bDUq-AGCB_ag9M7wId3DSFv2KNuZA6wtbwWFZUV8FZWiGgMSNlxlCJ7ib2XCT7GgN2vH6N624he6l0jetuI3jeSVZd7FeZvbhwGHY3D0eSUQs447-H-1X8Dge6XNQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Numerical investigations of convection heat transfer in a thermal source-embedded porous medium via a lattice Boltzmann method</title><source>ScienceDirect (Online service)</source><creator>Wang, Cun-Hai ; Liu, Zi-Yang ; Jiang, Ze-Yi ; Zhang, Xin-Xin</creator><creatorcontrib>Wang, Cun-Hai ; Liu, Zi-Yang ; Jiang, Ze-Yi ; Zhang, Xin-Xin</creatorcontrib><description>Convection heat transfer (CHT) in porous media founds broad significance in the applications of solar collectors, geothermal systems, and biological sciences. In this work, the natural CHT in a porous medium embedded with a rectangular thermal source at the bottom is numerically solved via the lattice Boltzmann method (LBM). The generalized Brinkman-Forchheimer-extended-Darcy model is applied to describe the momentum equation. The numerical solutions obtained by the LBM are verified against the experimental data for the correctness validation of the presented lattice Boltzmann model. Effects of the Darcy number (Da), medium porosity (ε), size of the thermal source, and the aspect ratio of the thermal source on the temperature- and flow-field in the porous medium are systematically investigated. Results show that the increase of Da remarkably enhances the heat exchange and changes the heat transfer mode from conduction to convection. The existence of the thermal source sidewall has a suppression effect on the heat exchange along the top wall of the thermal source, and this suppression effect is pronounced when the CHT is weak.</description><identifier>ISSN: 2214-157X</identifier><identifier>EISSN: 2214-157X</identifier><identifier>DOI: 10.1016/j.csite.2022.101758</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Convection heat transfer ; Embedded thermal source ; Lattice Boltzmann simulation ; Porous medium</subject><ispartof>Case studies in thermal engineering, 2022-02, Vol.30, p.101758, Article 101758</ispartof><rights>2022 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c414t-1cda988e0491ccf6bb29ddd818933c84b93d714b5679834014b225f95a801f773</citedby><cites>FETCH-LOGICAL-c414t-1cda988e0491ccf6bb29ddd818933c84b93d714b5679834014b225f95a801f773</cites><orcidid>0000-0002-7397-4936</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S2214157X22000041$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3549,27924,27925,45780</link.rule.ids></links><search><creatorcontrib>Wang, Cun-Hai</creatorcontrib><creatorcontrib>Liu, Zi-Yang</creatorcontrib><creatorcontrib>Jiang, Ze-Yi</creatorcontrib><creatorcontrib>Zhang, Xin-Xin</creatorcontrib><title>Numerical investigations of convection heat transfer in a thermal source-embedded porous medium via a lattice Boltzmann method</title><title>Case studies in thermal engineering</title><description>Convection heat transfer (CHT) in porous media founds broad significance in the applications of solar collectors, geothermal systems, and biological sciences. In this work, the natural CHT in a porous medium embedded with a rectangular thermal source at the bottom is numerically solved via the lattice Boltzmann method (LBM). The generalized Brinkman-Forchheimer-extended-Darcy model is applied to describe the momentum equation. The numerical solutions obtained by the LBM are verified against the experimental data for the correctness validation of the presented lattice Boltzmann model. Effects of the Darcy number (Da), medium porosity (ε), size of the thermal source, and the aspect ratio of the thermal source on the temperature- and flow-field in the porous medium are systematically investigated. Results show that the increase of Da remarkably enhances the heat exchange and changes the heat transfer mode from conduction to convection. The existence of the thermal source sidewall has a suppression effect on the heat exchange along the top wall of the thermal source, and this suppression effect is pronounced when the CHT is weak.</description><subject>Convection heat transfer</subject><subject>Embedded thermal source</subject><subject>Lattice Boltzmann simulation</subject><subject>Porous medium</subject><issn>2214-157X</issn><issn>2214-157X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNp9UctOwzAQjBBIIOgXcPEPpPiVxjlwAMSjEoILSNysjb2hrpK4st1KcODbcVuEOHHyejwzWs8UxTmjU0bZ7GI5NdElnHLK-RapK3VQnHDOZMmq-u3wz3xcTGJcUppJQjEpT4qvp_WAwRnoiRs3GJN7h-T8GInviPEZMtsrWSAkkgKMscOQqQRIWmAYsi76dTBY4tCitWjJyge_jmRA69YD2TjI3B5ScgbJte_T5wDjmJ_Twtuz4qiDPuLk5zwtXu9uX24eysfn-_nN1WNpJJOpZMZCoxRS2TBjulnb8sZaq5hqhDBKto2wNZNtNasbJSTNI-dV11SgKOvqWpwW872v9bDUq-AGCB_ag9M7wId3DSFv2KNuZA6wtbwWFZUV8FZWiGgMSNlxlCJ7ib2XCT7GgN2vH6N624he6l0jetuI3jeSVZd7FeZvbhwGHY3D0eSUQs447-H-1X8Dge6XNQ</recordid><startdate>202202</startdate><enddate>202202</enddate><creator>Wang, Cun-Hai</creator><creator>Liu, Zi-Yang</creator><creator>Jiang, Ze-Yi</creator><creator>Zhang, Xin-Xin</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-7397-4936</orcidid></search><sort><creationdate>202202</creationdate><title>Numerical investigations of convection heat transfer in a thermal source-embedded porous medium via a lattice Boltzmann method</title><author>Wang, Cun-Hai ; Liu, Zi-Yang ; Jiang, Ze-Yi ; Zhang, Xin-Xin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c414t-1cda988e0491ccf6bb29ddd818933c84b93d714b5679834014b225f95a801f773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Convection heat transfer</topic><topic>Embedded thermal source</topic><topic>Lattice Boltzmann simulation</topic><topic>Porous medium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Cun-Hai</creatorcontrib><creatorcontrib>Liu, Zi-Yang</creatorcontrib><creatorcontrib>Jiang, Ze-Yi</creatorcontrib><creatorcontrib>Zhang, Xin-Xin</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Directory of Open Access Journals</collection><jtitle>Case studies in thermal engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Cun-Hai</au><au>Liu, Zi-Yang</au><au>Jiang, Ze-Yi</au><au>Zhang, Xin-Xin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical investigations of convection heat transfer in a thermal source-embedded porous medium via a lattice Boltzmann method</atitle><jtitle>Case studies in thermal engineering</jtitle><date>2022-02</date><risdate>2022</risdate><volume>30</volume><spage>101758</spage><pages>101758-</pages><artnum>101758</artnum><issn>2214-157X</issn><eissn>2214-157X</eissn><abstract>Convection heat transfer (CHT) in porous media founds broad significance in the applications of solar collectors, geothermal systems, and biological sciences. In this work, the natural CHT in a porous medium embedded with a rectangular thermal source at the bottom is numerically solved via the lattice Boltzmann method (LBM). The generalized Brinkman-Forchheimer-extended-Darcy model is applied to describe the momentum equation. The numerical solutions obtained by the LBM are verified against the experimental data for the correctness validation of the presented lattice Boltzmann model. Effects of the Darcy number (Da), medium porosity (ε), size of the thermal source, and the aspect ratio of the thermal source on the temperature- and flow-field in the porous medium are systematically investigated. Results show that the increase of Da remarkably enhances the heat exchange and changes the heat transfer mode from conduction to convection. The existence of the thermal source sidewall has a suppression effect on the heat exchange along the top wall of the thermal source, and this suppression effect is pronounced when the CHT is weak.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.csite.2022.101758</doi><orcidid>https://orcid.org/0000-0002-7397-4936</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2214-157X
ispartof Case studies in thermal engineering, 2022-02, Vol.30, p.101758, Article 101758
issn 2214-157X
2214-157X
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_94758bd2735045a2b45eeecca44f2e43
source ScienceDirect (Online service)
subjects Convection heat transfer
Embedded thermal source
Lattice Boltzmann simulation
Porous medium
title Numerical investigations of convection heat transfer in a thermal source-embedded porous medium via a lattice Boltzmann method
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T12%3A44%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20investigations%20of%20convection%20heat%20transfer%20in%20a%20thermal%20source-embedded%20porous%20medium%20via%20a%20lattice%20Boltzmann%20method&rft.jtitle=Case%20studies%20in%20thermal%20engineering&rft.au=Wang,%20Cun-Hai&rft.date=2022-02&rft.volume=30&rft.spage=101758&rft.pages=101758-&rft.artnum=101758&rft.issn=2214-157X&rft.eissn=2214-157X&rft_id=info:doi/10.1016/j.csite.2022.101758&rft_dat=%3Celsevier_doaj_%3ES2214157X22000041%3C/elsevier_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c414t-1cda988e0491ccf6bb29ddd818933c84b93d714b5679834014b225f95a801f773%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true