Loading…
Multipolar-sensitive engineering of magnetic dipole spontaneous emission with a dielectric nanoresonator antenna
We propose an axisymmetric silicon nanoresonator with designed tapered angle well for the extraordinary enhancement of the decay rate of magnetic dipole (MD) emitters. Due to the resonant coupling of a MD emitter and the MD mode of the subwavelength resonator, the Purcell factor (PF) can easily reac...
Saved in:
Published in: | Scientific reports 2021-06, Vol.11 (1), p.12813-12813, Article 12813 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We propose an axisymmetric silicon nanoresonator with designed tapered angle well for the extraordinary enhancement of the decay rate of magnetic dipole (MD) emitters. Due to the resonant coupling of a MD emitter and the MD mode of the subwavelength resonator, the Purcell factor (PF) can easily reach 500, which is significantly higher than the PF when using a silicon nanosphere of the same size. The PF and the resonance frequency are conveniently tuned through the resonator diameter and the taper angle of the blind hole. When supported by a metallic substrate, further enhancement (
>
10
3
) of the MD spontaneous emission is triggered by an image-induced quadrupolar high-
Q
mode of the nanoantenna. For the sake of comparison we include a critical analysis of the canonical problem that considers a Si spherical shell. Our results might facilitate a novel strategy for promising realizations of chip-scale nanophotonic applications. |
---|---|
ISSN: | 2045-2322 2045-2322 |
DOI: | 10.1038/s41598-021-92322-9 |