Loading…
Optimal consensus control models on the sphere
In this paper, we investigate the consensus models on the sphere with control signals, where both the first and second order systems are considered. We provide the existence of the optimal control-trajectory pair and derive the first order optimality condition taking the form of the Pontryagin Minim...
Saved in:
Published in: | Results in control and optimization 2023-03, Vol.10, p.100203, Article 100203 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c361t-6af0cc510b0db9e4545d6372363d37745988e3b189e941838f025029079aa78a3 |
container_end_page | |
container_issue | |
container_start_page | 100203 |
container_title | Results in control and optimization |
container_volume | 10 |
creator | Huang, Hui Park, Hansol |
description | In this paper, we investigate the consensus models on the sphere with control signals, where both the first and second order systems are considered. We provide the existence of the optimal control-trajectory pair and derive the first order optimality condition taking the form of the Pontryagin Minimum Principle. Numeric simulations are also presented to show that the obtained optimal control can help to accelerate the process of reaching a consensus. |
doi_str_mv | 10.1016/j.rico.2023.100203 |
format | article |
fullrecord | <record><control><sourceid>elsevier_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_94a77f57f3944afe8bb1bb8faec4ecc8</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S266672072300005X</els_id><doaj_id>oai_doaj_org_article_94a77f57f3944afe8bb1bb8faec4ecc8</doaj_id><sourcerecordid>S266672072300005X</sourcerecordid><originalsourceid>FETCH-LOGICAL-c361t-6af0cc510b0db9e4545d6372363d37745988e3b189e941838f025029079aa78a3</originalsourceid><addsrcrecordid>eNp9kEtLxDAUhYsoOIzzB1z1D7Tm1TzAjQw-BoTZ6Dqk6Y2T0mmGpAr-e1Mr4srF5V4O9xwOX1FcY1RjhPlNX0dvQ00QoVlABNGzYkU455UgSJz_uS-LTUo9yj8S4zyrot6fJn80Q2nDmGBM72m-phiG8hg6GFIZxnI6QJlOB4hwVVw4MyTY_Ox18fpw_7J9qp73j7vt3XNlKcdTxY1D1jYYtahrFbCGNR2nglBOOyoEa5SUQFssFSiGJZUOkQYRhYQyRkhD18Vuye2C6fUp5orxUwfj9bcQ4ps2cfJ2AK2YEcI1wlHFmHEg2xa3rXQGLANrZc4iS5aNIaUI7jcPIz0D1L2eAeoZoF4AZtPtYsoI4MND1Ml6GC10PoKdcg3_n_0LQG53qg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Optimal consensus control models on the sphere</title><source>ScienceDirect</source><creator>Huang, Hui ; Park, Hansol</creator><creatorcontrib>Huang, Hui ; Park, Hansol</creatorcontrib><description>In this paper, we investigate the consensus models on the sphere with control signals, where both the first and second order systems are considered. We provide the existence of the optimal control-trajectory pair and derive the first order optimality condition taking the form of the Pontryagin Minimum Principle. Numeric simulations are also presented to show that the obtained optimal control can help to accelerate the process of reaching a consensus.</description><identifier>ISSN: 2666-7207</identifier><identifier>EISSN: 2666-7207</identifier><identifier>DOI: 10.1016/j.rico.2023.100203</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Aggregation ; Optimal control ; Pontryagin Minimum Principle ; Swarm sphere model ; Synchronization</subject><ispartof>Results in control and optimization, 2023-03, Vol.10, p.100203, Article 100203</ispartof><rights>2023 The Author(s)</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c361t-6af0cc510b0db9e4545d6372363d37745988e3b189e941838f025029079aa78a3</cites><orcidid>0000-0002-4171-0530 ; 0000-0002-1075-6472</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S266672072300005X$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3549,27924,27925,45780</link.rule.ids></links><search><creatorcontrib>Huang, Hui</creatorcontrib><creatorcontrib>Park, Hansol</creatorcontrib><title>Optimal consensus control models on the sphere</title><title>Results in control and optimization</title><description>In this paper, we investigate the consensus models on the sphere with control signals, where both the first and second order systems are considered. We provide the existence of the optimal control-trajectory pair and derive the first order optimality condition taking the form of the Pontryagin Minimum Principle. Numeric simulations are also presented to show that the obtained optimal control can help to accelerate the process of reaching a consensus.</description><subject>Aggregation</subject><subject>Optimal control</subject><subject>Pontryagin Minimum Principle</subject><subject>Swarm sphere model</subject><subject>Synchronization</subject><issn>2666-7207</issn><issn>2666-7207</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNp9kEtLxDAUhYsoOIzzB1z1D7Tm1TzAjQw-BoTZ6Dqk6Y2T0mmGpAr-e1Mr4srF5V4O9xwOX1FcY1RjhPlNX0dvQ00QoVlABNGzYkU455UgSJz_uS-LTUo9yj8S4zyrot6fJn80Q2nDmGBM72m-phiG8hg6GFIZxnI6QJlOB4hwVVw4MyTY_Ox18fpw_7J9qp73j7vt3XNlKcdTxY1D1jYYtahrFbCGNR2nglBOOyoEa5SUQFssFSiGJZUOkQYRhYQyRkhD18Vuye2C6fUp5orxUwfj9bcQ4ps2cfJ2AK2YEcI1wlHFmHEg2xa3rXQGLANrZc4iS5aNIaUI7jcPIz0D1L2eAeoZoF4AZtPtYsoI4MND1Ml6GC10PoKdcg3_n_0LQG53qg</recordid><startdate>202303</startdate><enddate>202303</enddate><creator>Huang, Hui</creator><creator>Park, Hansol</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-4171-0530</orcidid><orcidid>https://orcid.org/0000-0002-1075-6472</orcidid></search><sort><creationdate>202303</creationdate><title>Optimal consensus control models on the sphere</title><author>Huang, Hui ; Park, Hansol</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c361t-6af0cc510b0db9e4545d6372363d37745988e3b189e941838f025029079aa78a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Aggregation</topic><topic>Optimal control</topic><topic>Pontryagin Minimum Principle</topic><topic>Swarm sphere model</topic><topic>Synchronization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Hui</creatorcontrib><creatorcontrib>Park, Hansol</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Results in control and optimization</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Hui</au><au>Park, Hansol</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimal consensus control models on the sphere</atitle><jtitle>Results in control and optimization</jtitle><date>2023-03</date><risdate>2023</risdate><volume>10</volume><spage>100203</spage><pages>100203-</pages><artnum>100203</artnum><issn>2666-7207</issn><eissn>2666-7207</eissn><abstract>In this paper, we investigate the consensus models on the sphere with control signals, where both the first and second order systems are considered. We provide the existence of the optimal control-trajectory pair and derive the first order optimality condition taking the form of the Pontryagin Minimum Principle. Numeric simulations are also presented to show that the obtained optimal control can help to accelerate the process of reaching a consensus.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.rico.2023.100203</doi><orcidid>https://orcid.org/0000-0002-4171-0530</orcidid><orcidid>https://orcid.org/0000-0002-1075-6472</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2666-7207 |
ispartof | Results in control and optimization, 2023-03, Vol.10, p.100203, Article 100203 |
issn | 2666-7207 2666-7207 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_94a77f57f3944afe8bb1bb8faec4ecc8 |
source | ScienceDirect |
subjects | Aggregation Optimal control Pontryagin Minimum Principle Swarm sphere model Synchronization |
title | Optimal consensus control models on the sphere |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T03%3A57%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimal%20consensus%20control%20models%20on%20the%20sphere&rft.jtitle=Results%20in%20control%20and%20optimization&rft.au=Huang,%20Hui&rft.date=2023-03&rft.volume=10&rft.spage=100203&rft.pages=100203-&rft.artnum=100203&rft.issn=2666-7207&rft.eissn=2666-7207&rft_id=info:doi/10.1016/j.rico.2023.100203&rft_dat=%3Celsevier_doaj_%3ES266672072300005X%3C/elsevier_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c361t-6af0cc510b0db9e4545d6372363d37745988e3b189e941838f025029079aa78a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |