Loading…

Optimal consensus control models on the sphere

In this paper, we investigate the consensus models on the sphere with control signals, where both the first and second order systems are considered. We provide the existence of the optimal control-trajectory pair and derive the first order optimality condition taking the form of the Pontryagin Minim...

Full description

Saved in:
Bibliographic Details
Published in:Results in control and optimization 2023-03, Vol.10, p.100203, Article 100203
Main Authors: Huang, Hui, Park, Hansol
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c361t-6af0cc510b0db9e4545d6372363d37745988e3b189e941838f025029079aa78a3
container_end_page
container_issue
container_start_page 100203
container_title Results in control and optimization
container_volume 10
creator Huang, Hui
Park, Hansol
description In this paper, we investigate the consensus models on the sphere with control signals, where both the first and second order systems are considered. We provide the existence of the optimal control-trajectory pair and derive the first order optimality condition taking the form of the Pontryagin Minimum Principle. Numeric simulations are also presented to show that the obtained optimal control can help to accelerate the process of reaching a consensus.
doi_str_mv 10.1016/j.rico.2023.100203
format article
fullrecord <record><control><sourceid>elsevier_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_94a77f57f3944afe8bb1bb8faec4ecc8</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S266672072300005X</els_id><doaj_id>oai_doaj_org_article_94a77f57f3944afe8bb1bb8faec4ecc8</doaj_id><sourcerecordid>S266672072300005X</sourcerecordid><originalsourceid>FETCH-LOGICAL-c361t-6af0cc510b0db9e4545d6372363d37745988e3b189e941838f025029079aa78a3</originalsourceid><addsrcrecordid>eNp9kEtLxDAUhYsoOIzzB1z1D7Tm1TzAjQw-BoTZ6Dqk6Y2T0mmGpAr-e1Mr4srF5V4O9xwOX1FcY1RjhPlNX0dvQ00QoVlABNGzYkU455UgSJz_uS-LTUo9yj8S4zyrot6fJn80Q2nDmGBM72m-phiG8hg6GFIZxnI6QJlOB4hwVVw4MyTY_Ox18fpw_7J9qp73j7vt3XNlKcdTxY1D1jYYtahrFbCGNR2nglBOOyoEa5SUQFssFSiGJZUOkQYRhYQyRkhD18Vuye2C6fUp5orxUwfj9bcQ4ps2cfJ2AK2YEcI1wlHFmHEg2xa3rXQGLANrZc4iS5aNIaUI7jcPIz0D1L2eAeoZoF4AZtPtYsoI4MND1Ml6GC10PoKdcg3_n_0LQG53qg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Optimal consensus control models on the sphere</title><source>ScienceDirect</source><creator>Huang, Hui ; Park, Hansol</creator><creatorcontrib>Huang, Hui ; Park, Hansol</creatorcontrib><description>In this paper, we investigate the consensus models on the sphere with control signals, where both the first and second order systems are considered. We provide the existence of the optimal control-trajectory pair and derive the first order optimality condition taking the form of the Pontryagin Minimum Principle. Numeric simulations are also presented to show that the obtained optimal control can help to accelerate the process of reaching a consensus.</description><identifier>ISSN: 2666-7207</identifier><identifier>EISSN: 2666-7207</identifier><identifier>DOI: 10.1016/j.rico.2023.100203</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Aggregation ; Optimal control ; Pontryagin Minimum Principle ; Swarm sphere model ; Synchronization</subject><ispartof>Results in control and optimization, 2023-03, Vol.10, p.100203, Article 100203</ispartof><rights>2023 The Author(s)</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c361t-6af0cc510b0db9e4545d6372363d37745988e3b189e941838f025029079aa78a3</cites><orcidid>0000-0002-4171-0530 ; 0000-0002-1075-6472</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S266672072300005X$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3549,27924,27925,45780</link.rule.ids></links><search><creatorcontrib>Huang, Hui</creatorcontrib><creatorcontrib>Park, Hansol</creatorcontrib><title>Optimal consensus control models on the sphere</title><title>Results in control and optimization</title><description>In this paper, we investigate the consensus models on the sphere with control signals, where both the first and second order systems are considered. We provide the existence of the optimal control-trajectory pair and derive the first order optimality condition taking the form of the Pontryagin Minimum Principle. Numeric simulations are also presented to show that the obtained optimal control can help to accelerate the process of reaching a consensus.</description><subject>Aggregation</subject><subject>Optimal control</subject><subject>Pontryagin Minimum Principle</subject><subject>Swarm sphere model</subject><subject>Synchronization</subject><issn>2666-7207</issn><issn>2666-7207</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNp9kEtLxDAUhYsoOIzzB1z1D7Tm1TzAjQw-BoTZ6Dqk6Y2T0mmGpAr-e1Mr4srF5V4O9xwOX1FcY1RjhPlNX0dvQ00QoVlABNGzYkU455UgSJz_uS-LTUo9yj8S4zyrot6fJn80Q2nDmGBM72m-phiG8hg6GFIZxnI6QJlOB4hwVVw4MyTY_Ox18fpw_7J9qp73j7vt3XNlKcdTxY1D1jYYtahrFbCGNR2nglBOOyoEa5SUQFssFSiGJZUOkQYRhYQyRkhD18Vuye2C6fUp5orxUwfj9bcQ4ps2cfJ2AK2YEcI1wlHFmHEg2xa3rXQGLANrZc4iS5aNIaUI7jcPIz0D1L2eAeoZoF4AZtPtYsoI4MND1Ml6GC10PoKdcg3_n_0LQG53qg</recordid><startdate>202303</startdate><enddate>202303</enddate><creator>Huang, Hui</creator><creator>Park, Hansol</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-4171-0530</orcidid><orcidid>https://orcid.org/0000-0002-1075-6472</orcidid></search><sort><creationdate>202303</creationdate><title>Optimal consensus control models on the sphere</title><author>Huang, Hui ; Park, Hansol</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c361t-6af0cc510b0db9e4545d6372363d37745988e3b189e941838f025029079aa78a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Aggregation</topic><topic>Optimal control</topic><topic>Pontryagin Minimum Principle</topic><topic>Swarm sphere model</topic><topic>Synchronization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Hui</creatorcontrib><creatorcontrib>Park, Hansol</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Results in control and optimization</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Hui</au><au>Park, Hansol</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimal consensus control models on the sphere</atitle><jtitle>Results in control and optimization</jtitle><date>2023-03</date><risdate>2023</risdate><volume>10</volume><spage>100203</spage><pages>100203-</pages><artnum>100203</artnum><issn>2666-7207</issn><eissn>2666-7207</eissn><abstract>In this paper, we investigate the consensus models on the sphere with control signals, where both the first and second order systems are considered. We provide the existence of the optimal control-trajectory pair and derive the first order optimality condition taking the form of the Pontryagin Minimum Principle. Numeric simulations are also presented to show that the obtained optimal control can help to accelerate the process of reaching a consensus.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.rico.2023.100203</doi><orcidid>https://orcid.org/0000-0002-4171-0530</orcidid><orcidid>https://orcid.org/0000-0002-1075-6472</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2666-7207
ispartof Results in control and optimization, 2023-03, Vol.10, p.100203, Article 100203
issn 2666-7207
2666-7207
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_94a77f57f3944afe8bb1bb8faec4ecc8
source ScienceDirect
subjects Aggregation
Optimal control
Pontryagin Minimum Principle
Swarm sphere model
Synchronization
title Optimal consensus control models on the sphere
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T03%3A57%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimal%20consensus%20control%20models%20on%20the%20sphere&rft.jtitle=Results%20in%20control%20and%20optimization&rft.au=Huang,%20Hui&rft.date=2023-03&rft.volume=10&rft.spage=100203&rft.pages=100203-&rft.artnum=100203&rft.issn=2666-7207&rft.eissn=2666-7207&rft_id=info:doi/10.1016/j.rico.2023.100203&rft_dat=%3Celsevier_doaj_%3ES266672072300005X%3C/elsevier_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c361t-6af0cc510b0db9e4545d6372363d37745988e3b189e941838f025029079aa78a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true