Loading…

A Pilot Study on Plasma and Urine Neurotransmitter Levels in Children with Tic Disorders

Background: Tic disorders (TDs), including Tourette syndrome, are childhood-onset neuropsychiatric disorders characterized by motor and/or vocal tics that commonly affect children’s physical and mental health. The pathogenesis of TDs may be related to abnormal neurotransmitters in the cortico-striat...

Full description

Saved in:
Bibliographic Details
Published in:Brain sciences 2022-07, Vol.12 (7), p.880
Main Authors: Qian, Qiao-Qiao, Tan, Qian-Qian, Sun, Dan, Lu, Qing, Xin, Ying-Ying, Wu, Qian, Zhou, Yong, Liu, Yang-Xi, Tian, Pei-Chao, Liu, Zhi-Sheng
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Background: Tic disorders (TDs), including Tourette syndrome, are childhood-onset neuropsychiatric disorders characterized by motor and/or vocal tics that commonly affect children’s physical and mental health. The pathogenesis of TDs may be related to abnormal neurotransmitters in the cortico-striatal-thalamo-cortical circuitry, especially dopaminergic, glutamatergic, and serotonergic neurotransmitters. The purpose of this study was to preliminarily investigate the differences in the three types of neurotransmitters in plasma and urine between children with TD and healthy children. Methods: We collected 94 samples of plasma and 69 samples of urine from 3–12-year-old Chinese Han children with TD before treatment. The plasma and urine of the same number of healthy Chinese Han children, matched for age and sex, participating in a physical examination, were collected. Ultra-performance liquid chromatography-tandem mass spectrometry was used to detect the three types of neurotransmitters in the above samples. Results: The plasma levels of norepinephrine, glutamic acid, and γ-aminobutyric acid, and the urine levels of normetanephrine and 5-hydroxyindoleacetic acid were higher in the TD children than in healthy children. The area under the curve (AUC) values of the above neurotransmitters in plasma and urine analyzed by receiver operating characteristic curve analysis were all higher than 0.6, with significant differences. Among them, the combined AUC of dopamine, norepinephrine, normetanephrine, glutamic acid, and γ-aminobutyric acid in the 8–12-year-old subgroup was 0.930, and the sensitivity and specificity for TD were 0.821 and 0.974, respectively (p = 0.000). Conclusions: There are differences in plasma and urine neurotransmitters between TD children and healthy children, which lays a foundation for further research on the pathogenesis of TD.
ISSN:2076-3425
2076-3425
DOI:10.3390/brainsci12070880