Loading…

A Hybrid CNN⁻LSTM Algorithm for Online Defect Recognition of CO₂ Welding

At present, realizing high-quality automatic welding through online monitoring is a research focus in engineering applications. In this paper, a CNN⁻LSTM algorithm is proposed, which combines the advantages of convolutional neural networks (CNNs) and long short-term memory networks (LSTMs). The CNN⁻...

Full description

Saved in:
Bibliographic Details
Published in:Sensors (Basel, Switzerland) Switzerland), 2018-12, Vol.18 (12), p.4369
Main Authors: Liu, Tianyuan, Bao, Jinsong, Wang, Junliang, Zhang, Yiming
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c441t-d0be3c538f15e756d234270f33519325247e680a7e1e443fecfab3343ee42c243
cites cdi_FETCH-LOGICAL-c441t-d0be3c538f15e756d234270f33519325247e680a7e1e443fecfab3343ee42c243
container_end_page
container_issue 12
container_start_page 4369
container_title Sensors (Basel, Switzerland)
container_volume 18
creator Liu, Tianyuan
Bao, Jinsong
Wang, Junliang
Zhang, Yiming
description At present, realizing high-quality automatic welding through online monitoring is a research focus in engineering applications. In this paper, a CNN⁻LSTM algorithm is proposed, which combines the advantages of convolutional neural networks (CNNs) and long short-term memory networks (LSTMs). The CNN⁻LSTM algorithm establishes a shallow CNN to extract the primary features of the molten pool image. Then the feature tensor extracted by the CNN is transformed into the feature matrix. Finally, the rows of the feature matrix are fed into the LSTM network for feature fusion. This process realizes the implicit mapping from molten pool images to welding defects. The test results on the self-made molten pool image dataset show that CNN contributes to the overall feasibility of the CNN⁻LSTM algorithm and LSTM network is the most superior in the feature hybrid stage. The algorithm converges at 300 epochs and the accuracy of defects detection in CO₂ welding molten pool is 94%. The processing time of a single image is 0.067 ms, which fully meets the real-time monitoring requirement based on molten pool image. The experimental results on the MNIST and FashionMNIST datasets show that the algorithm is universal and can be used for similar image recognition and classification tasks.
doi_str_mv 10.3390/s18124369
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_94c5413eb1d244e8be8353be5d051b02</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_94c5413eb1d244e8be8353be5d051b02</doaj_id><sourcerecordid>2157674383</sourcerecordid><originalsourceid>FETCH-LOGICAL-c441t-d0be3c538f15e756d234270f33519325247e680a7e1e443fecfab3343ee42c243</originalsourceid><addsrcrecordid>eNpVkc9uEzEQxi1ERUvgwAsgH-EQsD3jXeeCFAVKK6WNVIo4Wl7v7NbVZt3aG6Qe29fibfokLKSN2tOMZj795s_H2DspPgHMxOcsjVQIxewFO5CocGqUEi-f5Pvsdc6XQigAMK_YPgiNWCIesOWcH91UKdR8cXp6f_tn-eP8hM-7NqYwXKx5ExNf9V3oiX-lhvzAz8jHtg9DiD2PDV-s7u_u-C_q6tC3b9he47pMbx_ihP08_Ha-OJouV9-PF_Pl1CPKYVqLisBrMI3UVOqiVoCqFA2AljNQWmFJhRGuJEmIMI5tXAWAQITKj4dO2PGWW0d3aa9SWLt0Y6ML9n8hpta6NATfkZ2h1yiBKlkrRDIVGdBQka6FltX4kAn7smVdbao11Z76IbnuGfR5pw8Xto2_bQHCGClHwIcHQIrXG8qDXYfsqetcT3GTrZK6LEoEA6P041bqU8w5UbMbI4X956TdOTlq3z_da6d8tA7-ApE3mAw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2157674383</pqid></control><display><type>article</type><title>A Hybrid CNN⁻LSTM Algorithm for Online Defect Recognition of CO₂ Welding</title><source>NCBI_PubMed Central(免费)</source><source>Publicly Available Content (ProQuest)</source><creator>Liu, Tianyuan ; Bao, Jinsong ; Wang, Junliang ; Zhang, Yiming</creator><creatorcontrib>Liu, Tianyuan ; Bao, Jinsong ; Wang, Junliang ; Zhang, Yiming</creatorcontrib><description>At present, realizing high-quality automatic welding through online monitoring is a research focus in engineering applications. In this paper, a CNN⁻LSTM algorithm is proposed, which combines the advantages of convolutional neural networks (CNNs) and long short-term memory networks (LSTMs). The CNN⁻LSTM algorithm establishes a shallow CNN to extract the primary features of the molten pool image. Then the feature tensor extracted by the CNN is transformed into the feature matrix. Finally, the rows of the feature matrix are fed into the LSTM network for feature fusion. This process realizes the implicit mapping from molten pool images to welding defects. The test results on the self-made molten pool image dataset show that CNN contributes to the overall feasibility of the CNN⁻LSTM algorithm and LSTM network is the most superior in the feature hybrid stage. The algorithm converges at 300 epochs and the accuracy of defects detection in CO₂ welding molten pool is 94%. The processing time of a single image is 0.067 ms, which fully meets the real-time monitoring requirement based on molten pool image. The experimental results on the MNIST and FashionMNIST datasets show that the algorithm is universal and can be used for similar image recognition and classification tasks.</description><identifier>ISSN: 1424-8220</identifier><identifier>EISSN: 1424-8220</identifier><identifier>DOI: 10.3390/s18124369</identifier><identifier>PMID: 30544744</identifier><language>eng</language><publisher>Switzerland: MDPI</publisher><subject>CNN ; CO2 welding ; deep learning ; LSTM ; molten pool ; online monitoring</subject><ispartof>Sensors (Basel, Switzerland), 2018-12, Vol.18 (12), p.4369</ispartof><rights>2018 by the authors. 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c441t-d0be3c538f15e756d234270f33519325247e680a7e1e443fecfab3343ee42c243</citedby><cites>FETCH-LOGICAL-c441t-d0be3c538f15e756d234270f33519325247e680a7e1e443fecfab3343ee42c243</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6308811/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6308811/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,36990,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30544744$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Tianyuan</creatorcontrib><creatorcontrib>Bao, Jinsong</creatorcontrib><creatorcontrib>Wang, Junliang</creatorcontrib><creatorcontrib>Zhang, Yiming</creatorcontrib><title>A Hybrid CNN⁻LSTM Algorithm for Online Defect Recognition of CO₂ Welding</title><title>Sensors (Basel, Switzerland)</title><addtitle>Sensors (Basel)</addtitle><description>At present, realizing high-quality automatic welding through online monitoring is a research focus in engineering applications. In this paper, a CNN⁻LSTM algorithm is proposed, which combines the advantages of convolutional neural networks (CNNs) and long short-term memory networks (LSTMs). The CNN⁻LSTM algorithm establishes a shallow CNN to extract the primary features of the molten pool image. Then the feature tensor extracted by the CNN is transformed into the feature matrix. Finally, the rows of the feature matrix are fed into the LSTM network for feature fusion. This process realizes the implicit mapping from molten pool images to welding defects. The test results on the self-made molten pool image dataset show that CNN contributes to the overall feasibility of the CNN⁻LSTM algorithm and LSTM network is the most superior in the feature hybrid stage. The algorithm converges at 300 epochs and the accuracy of defects detection in CO₂ welding molten pool is 94%. The processing time of a single image is 0.067 ms, which fully meets the real-time monitoring requirement based on molten pool image. The experimental results on the MNIST and FashionMNIST datasets show that the algorithm is universal and can be used for similar image recognition and classification tasks.</description><subject>CNN</subject><subject>CO2 welding</subject><subject>deep learning</subject><subject>LSTM</subject><subject>molten pool</subject><subject>online monitoring</subject><issn>1424-8220</issn><issn>1424-8220</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNpVkc9uEzEQxi1ERUvgwAsgH-EQsD3jXeeCFAVKK6WNVIo4Wl7v7NbVZt3aG6Qe29fibfokLKSN2tOMZj795s_H2DspPgHMxOcsjVQIxewFO5CocGqUEi-f5Pvsdc6XQigAMK_YPgiNWCIesOWcH91UKdR8cXp6f_tn-eP8hM-7NqYwXKx5ExNf9V3oiX-lhvzAz8jHtg9DiD2PDV-s7u_u-C_q6tC3b9he47pMbx_ihP08_Ha-OJouV9-PF_Pl1CPKYVqLisBrMI3UVOqiVoCqFA2AljNQWmFJhRGuJEmIMI5tXAWAQITKj4dO2PGWW0d3aa9SWLt0Y6ML9n8hpta6NATfkZ2h1yiBKlkrRDIVGdBQka6FltX4kAn7smVdbao11Z76IbnuGfR5pw8Xto2_bQHCGClHwIcHQIrXG8qDXYfsqetcT3GTrZK6LEoEA6P041bqU8w5UbMbI4X956TdOTlq3z_da6d8tA7-ApE3mAw</recordid><startdate>20181210</startdate><enddate>20181210</enddate><creator>Liu, Tianyuan</creator><creator>Bao, Jinsong</creator><creator>Wang, Junliang</creator><creator>Zhang, Yiming</creator><general>MDPI</general><general>MDPI AG</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20181210</creationdate><title>A Hybrid CNN⁻LSTM Algorithm for Online Defect Recognition of CO₂ Welding</title><author>Liu, Tianyuan ; Bao, Jinsong ; Wang, Junliang ; Zhang, Yiming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c441t-d0be3c538f15e756d234270f33519325247e680a7e1e443fecfab3343ee42c243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>CNN</topic><topic>CO2 welding</topic><topic>deep learning</topic><topic>LSTM</topic><topic>molten pool</topic><topic>online monitoring</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Tianyuan</creatorcontrib><creatorcontrib>Bao, Jinsong</creatorcontrib><creatorcontrib>Wang, Junliang</creatorcontrib><creatorcontrib>Zhang, Yiming</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ, Directory of Open Access Journals</collection><jtitle>Sensors (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Tianyuan</au><au>Bao, Jinsong</au><au>Wang, Junliang</au><au>Zhang, Yiming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Hybrid CNN⁻LSTM Algorithm for Online Defect Recognition of CO₂ Welding</atitle><jtitle>Sensors (Basel, Switzerland)</jtitle><addtitle>Sensors (Basel)</addtitle><date>2018-12-10</date><risdate>2018</risdate><volume>18</volume><issue>12</issue><spage>4369</spage><pages>4369-</pages><issn>1424-8220</issn><eissn>1424-8220</eissn><abstract>At present, realizing high-quality automatic welding through online monitoring is a research focus in engineering applications. In this paper, a CNN⁻LSTM algorithm is proposed, which combines the advantages of convolutional neural networks (CNNs) and long short-term memory networks (LSTMs). The CNN⁻LSTM algorithm establishes a shallow CNN to extract the primary features of the molten pool image. Then the feature tensor extracted by the CNN is transformed into the feature matrix. Finally, the rows of the feature matrix are fed into the LSTM network for feature fusion. This process realizes the implicit mapping from molten pool images to welding defects. The test results on the self-made molten pool image dataset show that CNN contributes to the overall feasibility of the CNN⁻LSTM algorithm and LSTM network is the most superior in the feature hybrid stage. The algorithm converges at 300 epochs and the accuracy of defects detection in CO₂ welding molten pool is 94%. The processing time of a single image is 0.067 ms, which fully meets the real-time monitoring requirement based on molten pool image. The experimental results on the MNIST and FashionMNIST datasets show that the algorithm is universal and can be used for similar image recognition and classification tasks.</abstract><cop>Switzerland</cop><pub>MDPI</pub><pmid>30544744</pmid><doi>10.3390/s18124369</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1424-8220
ispartof Sensors (Basel, Switzerland), 2018-12, Vol.18 (12), p.4369
issn 1424-8220
1424-8220
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_94c5413eb1d244e8be8353be5d051b02
source NCBI_PubMed Central(免费); Publicly Available Content (ProQuest)
subjects CNN
CO2 welding
deep learning
LSTM
molten pool
online monitoring
title A Hybrid CNN⁻LSTM Algorithm for Online Defect Recognition of CO₂ Welding
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T12%3A58%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Hybrid%20CNN%E2%81%BBLSTM%20Algorithm%20for%20Online%20Defect%20Recognition%20of%20CO%E2%82%82%20Welding&rft.jtitle=Sensors%20(Basel,%20Switzerland)&rft.au=Liu,%20Tianyuan&rft.date=2018-12-10&rft.volume=18&rft.issue=12&rft.spage=4369&rft.pages=4369-&rft.issn=1424-8220&rft.eissn=1424-8220&rft_id=info:doi/10.3390/s18124369&rft_dat=%3Cproquest_doaj_%3E2157674383%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c441t-d0be3c538f15e756d234270f33519325247e680a7e1e443fecfab3343ee42c243%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2157674383&rft_id=info:pmid/30544744&rfr_iscdi=true