Loading…

Evaluating the Performance of 193 nm Ultraviolet Photodissociation for Tandem Mass Tag Labeled Peptides

Despite the successful application of tandem mass tags (TMT) for peptide quantitation, missing reporter ions in higher energy collisional dissociation (HCD) spectra remains a challenge for consistent quantitation, especially for peptides with labile post-translational modifications. Ultraviolet phot...

Full description

Saved in:
Bibliographic Details
Published in:Analytica 2021-12, Vol.2 (4), p.140-155
Main Authors: Zhou, Mowei, Lee, Ju Yeon, Park, Gun Wook, Malhan, Neha, Liu, Tao, Shaw, Jared B.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Despite the successful application of tandem mass tags (TMT) for peptide quantitation, missing reporter ions in higher energy collisional dissociation (HCD) spectra remains a challenge for consistent quantitation, especially for peptides with labile post-translational modifications. Ultraviolet photodissociation (UVPD) is an alternative ion activation method shown to provide superior coverage for sequencing of peptides and intact proteins. Here, we optimized and evaluated 193 nm UVPD for the characterization of TMT-labeled model peptides, HeLa proteome, and N-glycopeptides from model proteins. UVPD yielded the same TMT reporter ions as HCD, at m/z 126–131. Additionally, UVPD produced a wide range of fragments that yielded more complete characterization of glycopeptides and less frequent missing TMT reporter ion channels, whereas HCD yielded a strong tradeoff between characterization and quantitation of TMT-labeled glycopeptides. However, the lower fragmentation efficiency of UVPD yielded fewer peptide identifications than HCD. Overall, 193 nm UVPD is a valuable tool that provides an alternative to HCD for the quantitation of large and highly modified peptides with labile PTMs. Continued development of instrumentation specific to UVPD will yield greater fragmentation efficiency and fulfil the potential of UVPD to be an all-in-one spectrum ion activation method for broad use in the field of proteomics.
ISSN:2673-4532
2673-4532
DOI:10.3390/analytica2040014