Loading…

Conservative Linear Difference Scheme for Rosenau-KdV Equation

A conservative three-level linear finite difference scheme for the numerical solution of the initial-boundary value problem of Rosenau-KdV equation is proposed. The difference scheme simulates two conservative quantities of the problem well. The existence and uniqueness of the difference solution ar...

Full description

Saved in:
Bibliographic Details
Published in:Advances in mathematical physics 2013-01, Vol.2013 (2013), p.1-7
Main Authors: Hu, Jinsong, Xu, Youcai, Hu, Bing
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a523t-1c58c6f6ff5553293ee9714e19d89eb929c9488a1dc77077fd52451d27a499633
cites cdi_FETCH-LOGICAL-a523t-1c58c6f6ff5553293ee9714e19d89eb929c9488a1dc77077fd52451d27a499633
container_end_page 7
container_issue 2013
container_start_page 1
container_title Advances in mathematical physics
container_volume 2013
creator Hu, Jinsong
Xu, Youcai
Hu, Bing
description A conservative three-level linear finite difference scheme for the numerical solution of the initial-boundary value problem of Rosenau-KdV equation is proposed. The difference scheme simulates two conservative quantities of the problem well. The existence and uniqueness of the difference solution are proved. It is shown that the finite difference scheme is of second-order convergence and unconditionally stable. Numerical experiments verify the theoretical results.
doi_str_mv 10.1155/2013/423718
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_94ede2bb2ca44ca3822e29ac665dc75a</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_94ede2bb2ca44ca3822e29ac665dc75a</doaj_id><sourcerecordid>3055297621</sourcerecordid><originalsourceid>FETCH-LOGICAL-a523t-1c58c6f6ff5553293ee9714e19d89eb929c9488a1dc77077fd52451d27a499633</originalsourceid><addsrcrecordid>eNqF0c9LHDEUB_BBLCjqybMw4EUso_PyYzK5CLJuVbpQqG2v4W3mRbPsTnaTnS397xs7ZQ-9NJeE8MmXF75FcQ71DYCUt6wGfisYV9AeFMfQtKrSwPXh_szqo-IspUWdF9ey0fK4uJuEPlHc4dbvqJz5njCWD945itRbKl_sG62odCGWX0OiHofqc_ejnG6G_CL0p8UHh8tEZ3_3k-L7p-m3yVM1-_L4PLmfVSgZ31ZgZWsb1zgnpeRMcyKtQBDortU010xbLdoWobNK1Uq5TjIhoWMKhdYN5yfF85jbBVyYdfQrjL9MQG_-XIT4ajBuvV2S0YI6YvM5syiERd4yRkyjbRqZ0yXmrKsxax3DZqC0NSufLC2X2FMYkoFGgdRMAmR6-Q9dhCH2-acGBGtrYAAiq4-jsjGkFMntB4TavFdj3qsxYzVZX4_6zfcd_vT_wRcjpkzI4R4LBTUH_hthr5PV</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1428012114</pqid></control><display><type>article</type><title>Conservative Linear Difference Scheme for Rosenau-KdV Equation</title><source>Open Access: Wiley-Blackwell Open Access Journals</source><source>Publicly Available Content (ProQuest)</source><creator>Hu, Jinsong ; Xu, Youcai ; Hu, Bing</creator><contributor>Neidhardt, Hagen</contributor><creatorcontrib>Hu, Jinsong ; Xu, Youcai ; Hu, Bing ; Neidhardt, Hagen</creatorcontrib><description>A conservative three-level linear finite difference scheme for the numerical solution of the initial-boundary value problem of Rosenau-KdV equation is proposed. The difference scheme simulates two conservative quantities of the problem well. The existence and uniqueness of the difference solution are proved. It is shown that the finite difference scheme is of second-order convergence and unconditionally stable. Numerical experiments verify the theoretical results.</description><identifier>ISSN: 1687-9120</identifier><identifier>EISSN: 1687-9139</identifier><identifier>DOI: 10.1155/2013/423718</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Puplishing Corporation</publisher><subject>Boundary value problems ; Computer simulation ; Convergence ; Finite difference method ; Finite element analysis ; Heat transfer ; Initial value problems ; Mathematical analysis ; Mathematical models ; Studies ; Uniqueness</subject><ispartof>Advances in mathematical physics, 2013-01, Vol.2013 (2013), p.1-7</ispartof><rights>Copyright © 2013 Jinsong Hu et al.</rights><rights>Copyright © 2013 Jinsong Hu et al. Jinsong Hu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a523t-1c58c6f6ff5553293ee9714e19d89eb929c9488a1dc77077fd52451d27a499633</citedby><cites>FETCH-LOGICAL-a523t-1c58c6f6ff5553293ee9714e19d89eb929c9488a1dc77077fd52451d27a499633</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1428012114/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1428012114?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25752,27923,27924,37011,37012,44589,74897</link.rule.ids></links><search><contributor>Neidhardt, Hagen</contributor><creatorcontrib>Hu, Jinsong</creatorcontrib><creatorcontrib>Xu, Youcai</creatorcontrib><creatorcontrib>Hu, Bing</creatorcontrib><title>Conservative Linear Difference Scheme for Rosenau-KdV Equation</title><title>Advances in mathematical physics</title><description>A conservative three-level linear finite difference scheme for the numerical solution of the initial-boundary value problem of Rosenau-KdV equation is proposed. The difference scheme simulates two conservative quantities of the problem well. The existence and uniqueness of the difference solution are proved. It is shown that the finite difference scheme is of second-order convergence and unconditionally stable. Numerical experiments verify the theoretical results.</description><subject>Boundary value problems</subject><subject>Computer simulation</subject><subject>Convergence</subject><subject>Finite difference method</subject><subject>Finite element analysis</subject><subject>Heat transfer</subject><subject>Initial value problems</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Studies</subject><subject>Uniqueness</subject><issn>1687-9120</issn><issn>1687-9139</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqF0c9LHDEUB_BBLCjqybMw4EUso_PyYzK5CLJuVbpQqG2v4W3mRbPsTnaTnS397xs7ZQ-9NJeE8MmXF75FcQ71DYCUt6wGfisYV9AeFMfQtKrSwPXh_szqo-IspUWdF9ey0fK4uJuEPlHc4dbvqJz5njCWD945itRbKl_sG62odCGWX0OiHofqc_ejnG6G_CL0p8UHh8tEZ3_3k-L7p-m3yVM1-_L4PLmfVSgZ31ZgZWsb1zgnpeRMcyKtQBDortU010xbLdoWobNK1Uq5TjIhoWMKhdYN5yfF85jbBVyYdfQrjL9MQG_-XIT4ajBuvV2S0YI6YvM5syiERd4yRkyjbRqZ0yXmrKsxax3DZqC0NSufLC2X2FMYkoFGgdRMAmR6-Q9dhCH2-acGBGtrYAAiq4-jsjGkFMntB4TavFdj3qsxYzVZX4_6zfcd_vT_wRcjpkzI4R4LBTUH_hthr5PV</recordid><startdate>20130101</startdate><enddate>20130101</enddate><creator>Hu, Jinsong</creator><creator>Xu, Youcai</creator><creator>Hu, Bing</creator><general>Hindawi Puplishing Corporation</general><general>Hindawi Publishing Corporation</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>L7M</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>DOA</scope></search><sort><creationdate>20130101</creationdate><title>Conservative Linear Difference Scheme for Rosenau-KdV Equation</title><author>Hu, Jinsong ; Xu, Youcai ; Hu, Bing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a523t-1c58c6f6ff5553293ee9714e19d89eb929c9488a1dc77077fd52451d27a499633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Boundary value problems</topic><topic>Computer simulation</topic><topic>Convergence</topic><topic>Finite difference method</topic><topic>Finite element analysis</topic><topic>Heat transfer</topic><topic>Initial value problems</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Studies</topic><topic>Uniqueness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hu, Jinsong</creatorcontrib><creatorcontrib>Xu, Youcai</creatorcontrib><creatorcontrib>Hu, Bing</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East &amp; Africa Database</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Advances in mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hu, Jinsong</au><au>Xu, Youcai</au><au>Hu, Bing</au><au>Neidhardt, Hagen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Conservative Linear Difference Scheme for Rosenau-KdV Equation</atitle><jtitle>Advances in mathematical physics</jtitle><date>2013-01-01</date><risdate>2013</risdate><volume>2013</volume><issue>2013</issue><spage>1</spage><epage>7</epage><pages>1-7</pages><issn>1687-9120</issn><eissn>1687-9139</eissn><abstract>A conservative three-level linear finite difference scheme for the numerical solution of the initial-boundary value problem of Rosenau-KdV equation is proposed. The difference scheme simulates two conservative quantities of the problem well. The existence and uniqueness of the difference solution are proved. It is shown that the finite difference scheme is of second-order convergence and unconditionally stable. Numerical experiments verify the theoretical results.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Puplishing Corporation</pub><doi>10.1155/2013/423718</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1687-9120
ispartof Advances in mathematical physics, 2013-01, Vol.2013 (2013), p.1-7
issn 1687-9120
1687-9139
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_94ede2bb2ca44ca3822e29ac665dc75a
source Open Access: Wiley-Blackwell Open Access Journals; Publicly Available Content (ProQuest)
subjects Boundary value problems
Computer simulation
Convergence
Finite difference method
Finite element analysis
Heat transfer
Initial value problems
Mathematical analysis
Mathematical models
Studies
Uniqueness
title Conservative Linear Difference Scheme for Rosenau-KdV Equation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T02%3A10%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Conservative%20Linear%20Difference%20Scheme%20for%20Rosenau-KdV%20Equation&rft.jtitle=Advances%20in%20mathematical%20physics&rft.au=Hu,%20Jinsong&rft.date=2013-01-01&rft.volume=2013&rft.issue=2013&rft.spage=1&rft.epage=7&rft.pages=1-7&rft.issn=1687-9120&rft.eissn=1687-9139&rft_id=info:doi/10.1155/2013/423718&rft_dat=%3Cproquest_doaj_%3E3055297621%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a523t-1c58c6f6ff5553293ee9714e19d89eb929c9488a1dc77077fd52451d27a499633%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1428012114&rft_id=info:pmid/&rfr_iscdi=true