Loading…
Conservative Linear Difference Scheme for Rosenau-KdV Equation
A conservative three-level linear finite difference scheme for the numerical solution of the initial-boundary value problem of Rosenau-KdV equation is proposed. The difference scheme simulates two conservative quantities of the problem well. The existence and uniqueness of the difference solution ar...
Saved in:
Published in: | Advances in mathematical physics 2013-01, Vol.2013 (2013), p.1-7 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a523t-1c58c6f6ff5553293ee9714e19d89eb929c9488a1dc77077fd52451d27a499633 |
---|---|
cites | cdi_FETCH-LOGICAL-a523t-1c58c6f6ff5553293ee9714e19d89eb929c9488a1dc77077fd52451d27a499633 |
container_end_page | 7 |
container_issue | 2013 |
container_start_page | 1 |
container_title | Advances in mathematical physics |
container_volume | 2013 |
creator | Hu, Jinsong Xu, Youcai Hu, Bing |
description | A conservative three-level linear finite difference scheme for the numerical solution of the initial-boundary value problem of Rosenau-KdV equation is proposed. The difference scheme simulates two conservative quantities of the problem well. The existence and uniqueness of the difference solution are proved. It is shown that the finite difference scheme is of second-order convergence and unconditionally stable. Numerical experiments verify the theoretical results. |
doi_str_mv | 10.1155/2013/423718 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_94ede2bb2ca44ca3822e29ac665dc75a</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_94ede2bb2ca44ca3822e29ac665dc75a</doaj_id><sourcerecordid>3055297621</sourcerecordid><originalsourceid>FETCH-LOGICAL-a523t-1c58c6f6ff5553293ee9714e19d89eb929c9488a1dc77077fd52451d27a499633</originalsourceid><addsrcrecordid>eNqF0c9LHDEUB_BBLCjqybMw4EUso_PyYzK5CLJuVbpQqG2v4W3mRbPsTnaTnS397xs7ZQ-9NJeE8MmXF75FcQ71DYCUt6wGfisYV9AeFMfQtKrSwPXh_szqo-IspUWdF9ey0fK4uJuEPlHc4dbvqJz5njCWD945itRbKl_sG62odCGWX0OiHofqc_ejnG6G_CL0p8UHh8tEZ3_3k-L7p-m3yVM1-_L4PLmfVSgZ31ZgZWsb1zgnpeRMcyKtQBDortU010xbLdoWobNK1Uq5TjIhoWMKhdYN5yfF85jbBVyYdfQrjL9MQG_-XIT4ajBuvV2S0YI6YvM5syiERd4yRkyjbRqZ0yXmrKsxax3DZqC0NSufLC2X2FMYkoFGgdRMAmR6-Q9dhCH2-acGBGtrYAAiq4-jsjGkFMntB4TavFdj3qsxYzVZX4_6zfcd_vT_wRcjpkzI4R4LBTUH_hthr5PV</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1428012114</pqid></control><display><type>article</type><title>Conservative Linear Difference Scheme for Rosenau-KdV Equation</title><source>Open Access: Wiley-Blackwell Open Access Journals</source><source>Publicly Available Content (ProQuest)</source><creator>Hu, Jinsong ; Xu, Youcai ; Hu, Bing</creator><contributor>Neidhardt, Hagen</contributor><creatorcontrib>Hu, Jinsong ; Xu, Youcai ; Hu, Bing ; Neidhardt, Hagen</creatorcontrib><description>A conservative three-level linear finite difference scheme for the numerical solution of the initial-boundary value problem of Rosenau-KdV equation is proposed. The difference scheme simulates two conservative quantities of the problem well. The existence and uniqueness of the difference solution are proved. It is shown that the finite difference scheme is of second-order convergence and unconditionally stable. Numerical experiments verify the theoretical results.</description><identifier>ISSN: 1687-9120</identifier><identifier>EISSN: 1687-9139</identifier><identifier>DOI: 10.1155/2013/423718</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Puplishing Corporation</publisher><subject>Boundary value problems ; Computer simulation ; Convergence ; Finite difference method ; Finite element analysis ; Heat transfer ; Initial value problems ; Mathematical analysis ; Mathematical models ; Studies ; Uniqueness</subject><ispartof>Advances in mathematical physics, 2013-01, Vol.2013 (2013), p.1-7</ispartof><rights>Copyright © 2013 Jinsong Hu et al.</rights><rights>Copyright © 2013 Jinsong Hu et al. Jinsong Hu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a523t-1c58c6f6ff5553293ee9714e19d89eb929c9488a1dc77077fd52451d27a499633</citedby><cites>FETCH-LOGICAL-a523t-1c58c6f6ff5553293ee9714e19d89eb929c9488a1dc77077fd52451d27a499633</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1428012114/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1428012114?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25752,27923,27924,37011,37012,44589,74897</link.rule.ids></links><search><contributor>Neidhardt, Hagen</contributor><creatorcontrib>Hu, Jinsong</creatorcontrib><creatorcontrib>Xu, Youcai</creatorcontrib><creatorcontrib>Hu, Bing</creatorcontrib><title>Conservative Linear Difference Scheme for Rosenau-KdV Equation</title><title>Advances in mathematical physics</title><description>A conservative three-level linear finite difference scheme for the numerical solution of the initial-boundary value problem of Rosenau-KdV equation is proposed. The difference scheme simulates two conservative quantities of the problem well. The existence and uniqueness of the difference solution are proved. It is shown that the finite difference scheme is of second-order convergence and unconditionally stable. Numerical experiments verify the theoretical results.</description><subject>Boundary value problems</subject><subject>Computer simulation</subject><subject>Convergence</subject><subject>Finite difference method</subject><subject>Finite element analysis</subject><subject>Heat transfer</subject><subject>Initial value problems</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Studies</subject><subject>Uniqueness</subject><issn>1687-9120</issn><issn>1687-9139</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqF0c9LHDEUB_BBLCjqybMw4EUso_PyYzK5CLJuVbpQqG2v4W3mRbPsTnaTnS397xs7ZQ-9NJeE8MmXF75FcQ71DYCUt6wGfisYV9AeFMfQtKrSwPXh_szqo-IspUWdF9ey0fK4uJuEPlHc4dbvqJz5njCWD945itRbKl_sG62odCGWX0OiHofqc_ejnG6G_CL0p8UHh8tEZ3_3k-L7p-m3yVM1-_L4PLmfVSgZ31ZgZWsb1zgnpeRMcyKtQBDortU010xbLdoWobNK1Uq5TjIhoWMKhdYN5yfF85jbBVyYdfQrjL9MQG_-XIT4ajBuvV2S0YI6YvM5syiERd4yRkyjbRqZ0yXmrKsxax3DZqC0NSufLC2X2FMYkoFGgdRMAmR6-Q9dhCH2-acGBGtrYAAiq4-jsjGkFMntB4TavFdj3qsxYzVZX4_6zfcd_vT_wRcjpkzI4R4LBTUH_hthr5PV</recordid><startdate>20130101</startdate><enddate>20130101</enddate><creator>Hu, Jinsong</creator><creator>Xu, Youcai</creator><creator>Hu, Bing</creator><general>Hindawi Puplishing Corporation</general><general>Hindawi Publishing Corporation</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>L7M</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>DOA</scope></search><sort><creationdate>20130101</creationdate><title>Conservative Linear Difference Scheme for Rosenau-KdV Equation</title><author>Hu, Jinsong ; Xu, Youcai ; Hu, Bing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a523t-1c58c6f6ff5553293ee9714e19d89eb929c9488a1dc77077fd52451d27a499633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Boundary value problems</topic><topic>Computer simulation</topic><topic>Convergence</topic><topic>Finite difference method</topic><topic>Finite element analysis</topic><topic>Heat transfer</topic><topic>Initial value problems</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Studies</topic><topic>Uniqueness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hu, Jinsong</creatorcontrib><creatorcontrib>Xu, Youcai</creatorcontrib><creatorcontrib>Hu, Bing</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East & Africa Database</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Advances in mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hu, Jinsong</au><au>Xu, Youcai</au><au>Hu, Bing</au><au>Neidhardt, Hagen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Conservative Linear Difference Scheme for Rosenau-KdV Equation</atitle><jtitle>Advances in mathematical physics</jtitle><date>2013-01-01</date><risdate>2013</risdate><volume>2013</volume><issue>2013</issue><spage>1</spage><epage>7</epage><pages>1-7</pages><issn>1687-9120</issn><eissn>1687-9139</eissn><abstract>A conservative three-level linear finite difference scheme for the numerical solution of the initial-boundary value problem of Rosenau-KdV equation is proposed. The difference scheme simulates two conservative quantities of the problem well. The existence and uniqueness of the difference solution are proved. It is shown that the finite difference scheme is of second-order convergence and unconditionally stable. Numerical experiments verify the theoretical results.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Puplishing Corporation</pub><doi>10.1155/2013/423718</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1687-9120 |
ispartof | Advances in mathematical physics, 2013-01, Vol.2013 (2013), p.1-7 |
issn | 1687-9120 1687-9139 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_94ede2bb2ca44ca3822e29ac665dc75a |
source | Open Access: Wiley-Blackwell Open Access Journals; Publicly Available Content (ProQuest) |
subjects | Boundary value problems Computer simulation Convergence Finite difference method Finite element analysis Heat transfer Initial value problems Mathematical analysis Mathematical models Studies Uniqueness |
title | Conservative Linear Difference Scheme for Rosenau-KdV Equation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T02%3A10%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Conservative%20Linear%20Difference%20Scheme%20for%20Rosenau-KdV%20Equation&rft.jtitle=Advances%20in%20mathematical%20physics&rft.au=Hu,%20Jinsong&rft.date=2013-01-01&rft.volume=2013&rft.issue=2013&rft.spage=1&rft.epage=7&rft.pages=1-7&rft.issn=1687-9120&rft.eissn=1687-9139&rft_id=info:doi/10.1155/2013/423718&rft_dat=%3Cproquest_doaj_%3E3055297621%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a523t-1c58c6f6ff5553293ee9714e19d89eb929c9488a1dc77077fd52451d27a499633%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1428012114&rft_id=info:pmid/&rfr_iscdi=true |