Loading…

Subwavelength Localization of Atomic Excitation Using Electromagnetically Induced Transparency

We report an experiment in which an atomic excitation is localized to a spatial width that is a factor of 8 smaller than the wavelength of the incident light. The experiment utilizes the sensitivity of the dark state of electromagnetically induced transparency (EIT) to the intensity of the coupling...

Full description

Saved in:
Bibliographic Details
Published in:Physical review. X 2013-09, Vol.3 (3), p.031014, Article 031014
Main Authors: Miles, J. A., Simmons, Z. J., Yavuz, D. D.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c382t-19c18d51625e1869d3b20072c01ef074e1448956a7dc136b5168aac50b513a5a3
cites cdi_FETCH-LOGICAL-c382t-19c18d51625e1869d3b20072c01ef074e1448956a7dc136b5168aac50b513a5a3
container_end_page
container_issue 3
container_start_page 031014
container_title Physical review. X
container_volume 3
creator Miles, J. A.
Simmons, Z. J.
Yavuz, D. D.
description We report an experiment in which an atomic excitation is localized to a spatial width that is a factor of 8 smaller than the wavelength of the incident light. The experiment utilizes the sensitivity of the dark state of electromagnetically induced transparency (EIT) to the intensity of the coupling laser beam. A standing-wave coupling laser with a sinusoidally varying intensity yields tightly confined Raman excitations during the EIT process. The excitations, located near the nodes of the intensity profile, have a width of 100 nm. The experiment is performed using ultracold Rb87 atoms trapped in an optical dipole trap, and atomic localization is achieved with EIT pulses that are approximately 100 ns long. To probe subwavelength atom localization, we have developed a technique that can measure the width of the atomic excitations with nanometer spatial resolution.
doi_str_mv 10.1103/PhysRevX.3.031014
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_94fe2f96eb5e4f2e9b51980827922016</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_94fe2f96eb5e4f2e9b51980827922016</doaj_id><sourcerecordid>2550300208</sourcerecordid><originalsourceid>FETCH-LOGICAL-c382t-19c18d51625e1869d3b20072c01ef074e1448956a7dc136b5168aac50b513a5a3</originalsourceid><addsrcrecordid>eNpNUV1Lw0AQDKJgqf0BvgV8Tt27y8flsZSqhYKiLfjkcbls0pQ0V--Savz1nkbFfdlhmJ0dGM-7JDAlBNj1w7a3j3h8nrIpMAIkPPFGlMQQMAb89B8-9ybW7sBN7FRJMvJenrrsTR6xxqZst_5KK1lXH7KtdOPrwp-1el8pf_GuqnYgN7ZqSn9Ro2qN3suywbZyN3XvL5u8U5j7ayMbe5AGG9VfeGeFrC1OfvbY29ws1vO7YHV_u5zPVoFinLYBSRXheURiGiHhcZqzjAIkVAHBApIQSRjyNIplkivC4swpuZQqAoeYjCQbe8vBN9dyJw6m2kvTCy0r8U1oUwppXNAaRRoWSIs0xizCsKCYOo-UA6dJSimQ2HldDV4Ho187tK3Y6c40Lr6gUQQMgAJ3KjKolNHWGiz-vhIQX62I31YEE0Mr7BOSF4Dd</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2550300208</pqid></control><display><type>article</type><title>Subwavelength Localization of Atomic Excitation Using Electromagnetically Induced Transparency</title><source>Publicly Available Content Database</source><creator>Miles, J. A. ; Simmons, Z. J. ; Yavuz, D. D.</creator><creatorcontrib>Miles, J. A. ; Simmons, Z. J. ; Yavuz, D. D.</creatorcontrib><description>We report an experiment in which an atomic excitation is localized to a spatial width that is a factor of 8 smaller than the wavelength of the incident light. The experiment utilizes the sensitivity of the dark state of electromagnetically induced transparency (EIT) to the intensity of the coupling laser beam. A standing-wave coupling laser with a sinusoidally varying intensity yields tightly confined Raman excitations during the EIT process. The excitations, located near the nodes of the intensity profile, have a width of 100 nm. The experiment is performed using ultracold Rb87 atoms trapped in an optical dipole trap, and atomic localization is achieved with EIT pulses that are approximately 100 ns long. To probe subwavelength atom localization, we have developed a technique that can measure the width of the atomic excitations with nanometer spatial resolution.</description><identifier>ISSN: 2160-3308</identifier><identifier>EISSN: 2160-3308</identifier><identifier>DOI: 10.1103/PhysRevX.3.031014</identifier><language>eng</language><publisher>College Park: American Physical Society</publisher><subject>Atomic excitations ; Clouds ; Color ; Coupling ; Dipoles ; Experiments ; Ground state ; Incident light ; Laser beams ; Lasers ; Light ; Light diffraction ; Localization ; Nodes (standing waves) ; Population ; Population control ; Rubidium ; Spatial resolution ; Standing waves ; Wave diffraction</subject><ispartof>Physical review. X, 2013-09, Vol.3 (3), p.031014, Article 031014</ispartof><rights>2013. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c382t-19c18d51625e1869d3b20072c01ef074e1448956a7dc136b5168aac50b513a5a3</citedby><cites>FETCH-LOGICAL-c382t-19c18d51625e1869d3b20072c01ef074e1448956a7dc136b5168aac50b513a5a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2550300208?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Miles, J. A.</creatorcontrib><creatorcontrib>Simmons, Z. J.</creatorcontrib><creatorcontrib>Yavuz, D. D.</creatorcontrib><title>Subwavelength Localization of Atomic Excitation Using Electromagnetically Induced Transparency</title><title>Physical review. X</title><description>We report an experiment in which an atomic excitation is localized to a spatial width that is a factor of 8 smaller than the wavelength of the incident light. The experiment utilizes the sensitivity of the dark state of electromagnetically induced transparency (EIT) to the intensity of the coupling laser beam. A standing-wave coupling laser with a sinusoidally varying intensity yields tightly confined Raman excitations during the EIT process. The excitations, located near the nodes of the intensity profile, have a width of 100 nm. The experiment is performed using ultracold Rb87 atoms trapped in an optical dipole trap, and atomic localization is achieved with EIT pulses that are approximately 100 ns long. To probe subwavelength atom localization, we have developed a technique that can measure the width of the atomic excitations with nanometer spatial resolution.</description><subject>Atomic excitations</subject><subject>Clouds</subject><subject>Color</subject><subject>Coupling</subject><subject>Dipoles</subject><subject>Experiments</subject><subject>Ground state</subject><subject>Incident light</subject><subject>Laser beams</subject><subject>Lasers</subject><subject>Light</subject><subject>Light diffraction</subject><subject>Localization</subject><subject>Nodes (standing waves)</subject><subject>Population</subject><subject>Population control</subject><subject>Rubidium</subject><subject>Spatial resolution</subject><subject>Standing waves</subject><subject>Wave diffraction</subject><issn>2160-3308</issn><issn>2160-3308</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNUV1Lw0AQDKJgqf0BvgV8Tt27y8flsZSqhYKiLfjkcbls0pQ0V--Savz1nkbFfdlhmJ0dGM-7JDAlBNj1w7a3j3h8nrIpMAIkPPFGlMQQMAb89B8-9ybW7sBN7FRJMvJenrrsTR6xxqZst_5KK1lXH7KtdOPrwp-1el8pf_GuqnYgN7ZqSn9Ro2qN3suywbZyN3XvL5u8U5j7ayMbe5AGG9VfeGeFrC1OfvbY29ws1vO7YHV_u5zPVoFinLYBSRXheURiGiHhcZqzjAIkVAHBApIQSRjyNIplkivC4swpuZQqAoeYjCQbe8vBN9dyJw6m2kvTCy0r8U1oUwppXNAaRRoWSIs0xizCsKCYOo-UA6dJSimQ2HldDV4Ho187tK3Y6c40Lr6gUQQMgAJ3KjKolNHWGiz-vhIQX62I31YEE0Mr7BOSF4Dd</recordid><startdate>20130901</startdate><enddate>20130901</enddate><creator>Miles, J. A.</creator><creator>Simmons, Z. J.</creator><creator>Yavuz, D. D.</creator><general>American Physical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M2P</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>DOA</scope></search><sort><creationdate>20130901</creationdate><title>Subwavelength Localization of Atomic Excitation Using Electromagnetically Induced Transparency</title><author>Miles, J. A. ; Simmons, Z. J. ; Yavuz, D. D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c382t-19c18d51625e1869d3b20072c01ef074e1448956a7dc136b5168aac50b513a5a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Atomic excitations</topic><topic>Clouds</topic><topic>Color</topic><topic>Coupling</topic><topic>Dipoles</topic><topic>Experiments</topic><topic>Ground state</topic><topic>Incident light</topic><topic>Laser beams</topic><topic>Lasers</topic><topic>Light</topic><topic>Light diffraction</topic><topic>Localization</topic><topic>Nodes (standing waves)</topic><topic>Population</topic><topic>Population control</topic><topic>Rubidium</topic><topic>Spatial resolution</topic><topic>Standing waves</topic><topic>Wave diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Miles, J. A.</creatorcontrib><creatorcontrib>Simmons, Z. J.</creatorcontrib><creatorcontrib>Yavuz, D. D.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><collection>Directory of Open Access Journals</collection><jtitle>Physical review. X</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Miles, J. A.</au><au>Simmons, Z. J.</au><au>Yavuz, D. D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Subwavelength Localization of Atomic Excitation Using Electromagnetically Induced Transparency</atitle><jtitle>Physical review. X</jtitle><date>2013-09-01</date><risdate>2013</risdate><volume>3</volume><issue>3</issue><spage>031014</spage><pages>031014-</pages><artnum>031014</artnum><issn>2160-3308</issn><eissn>2160-3308</eissn><abstract>We report an experiment in which an atomic excitation is localized to a spatial width that is a factor of 8 smaller than the wavelength of the incident light. The experiment utilizes the sensitivity of the dark state of electromagnetically induced transparency (EIT) to the intensity of the coupling laser beam. A standing-wave coupling laser with a sinusoidally varying intensity yields tightly confined Raman excitations during the EIT process. The excitations, located near the nodes of the intensity profile, have a width of 100 nm. The experiment is performed using ultracold Rb87 atoms trapped in an optical dipole trap, and atomic localization is achieved with EIT pulses that are approximately 100 ns long. To probe subwavelength atom localization, we have developed a technique that can measure the width of the atomic excitations with nanometer spatial resolution.</abstract><cop>College Park</cop><pub>American Physical Society</pub><doi>10.1103/PhysRevX.3.031014</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2160-3308
ispartof Physical review. X, 2013-09, Vol.3 (3), p.031014, Article 031014
issn 2160-3308
2160-3308
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_94fe2f96eb5e4f2e9b51980827922016
source Publicly Available Content Database
subjects Atomic excitations
Clouds
Color
Coupling
Dipoles
Experiments
Ground state
Incident light
Laser beams
Lasers
Light
Light diffraction
Localization
Nodes (standing waves)
Population
Population control
Rubidium
Spatial resolution
Standing waves
Wave diffraction
title Subwavelength Localization of Atomic Excitation Using Electromagnetically Induced Transparency
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T13%3A13%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Subwavelength%20Localization%20of%20Atomic%20Excitation%20Using%20Electromagnetically%20Induced%20Transparency&rft.jtitle=Physical%20review.%20X&rft.au=Miles,%20J.%20A.&rft.date=2013-09-01&rft.volume=3&rft.issue=3&rft.spage=031014&rft.pages=031014-&rft.artnum=031014&rft.issn=2160-3308&rft.eissn=2160-3308&rft_id=info:doi/10.1103/PhysRevX.3.031014&rft_dat=%3Cproquest_doaj_%3E2550300208%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c382t-19c18d51625e1869d3b20072c01ef074e1448956a7dc136b5168aac50b513a5a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2550300208&rft_id=info:pmid/&rfr_iscdi=true