Loading…

Structural basis for the activation of a compact CRISPR-Cas13 nuclease

The CRISPR-Cas13 ribonucleases have been widely applied for RNA knockdown and transcriptional modulation owing to their high programmability and specificity. However, the large size of Cas13 effectors and their non-specific RNA cleavage upon target activation limit the adeno-associated virus based d...

Full description

Saved in:
Bibliographic Details
Published in:Nature communications 2023-09, Vol.14 (1), p.5845-5845, Article 5845
Main Authors: Deng, Xiangyu, Osikpa, Emmanuel, Yang, Jie, Oladeji, Seye J., Smith, Jamie, Gao, Xue, Gao, Yang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c518t-8f69bc896802365ba54744bfa2002816e5ade6a70b0deb86faa74de076de02713
cites cdi_FETCH-LOGICAL-c518t-8f69bc896802365ba54744bfa2002816e5ade6a70b0deb86faa74de076de02713
container_end_page 5845
container_issue 1
container_start_page 5845
container_title Nature communications
container_volume 14
creator Deng, Xiangyu
Osikpa, Emmanuel
Yang, Jie
Oladeji, Seye J.
Smith, Jamie
Gao, Xue
Gao, Yang
description The CRISPR-Cas13 ribonucleases have been widely applied for RNA knockdown and transcriptional modulation owing to their high programmability and specificity. However, the large size of Cas13 effectors and their non-specific RNA cleavage upon target activation limit the adeno-associated virus based delivery of Cas13 systems for therapeutic applications. Herein, we report detailed biochemical and structural characterizations of a compact Cas13 (Cas13bt3) suitable for adeno-associated virus delivery. Distinct from many other Cas13 systems, Cas13bt3 cleaves the target and other nonspecific RNA at internal “UC” sites and is activated in a target length-dependent manner. The cryo-electron microscope structure of Cas13bt3 in a fully active state illustrates the structural basis of Cas13bt3 activation. Guided by the structure, we obtain engineered Cas13bt3 variants with minimal off-target cleavage yet maintained target cleavage activities. In conclusion, our biochemical and structural data illustrate a distinct mechanism for Cas13bt3 activation and guide the engineering of Cas13bt3 applications. The authors present the structure of Cas13bt3 in an activated state, illustrating its target length-dependent activation mechanism, and use it as a guide to develop a high-fidelity Cas13bt3 variant suitable for RNA knockdown and therapeutic applications.
doi_str_mv 10.1038/s41467-023-41501-5
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_950888735f8144ccbf2674f26b86c5fe</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_950888735f8144ccbf2674f26b86c5fe</doaj_id><sourcerecordid>2866604879</sourcerecordid><originalsourceid>FETCH-LOGICAL-c518t-8f69bc896802365ba54744bfa2002816e5ade6a70b0deb86faa74de076de02713</originalsourceid><addsrcrecordid>eNp9kU1v1DAQhi0EolXpH-AUiQuXwPjbOSG0orBSJVALZ2vi2NussvFiO5X673GbCigHfBiPxu_7eDRDyGsK7yhw8z4LKpRugfFWUAm0lc_IKQNBW6oZf_5XfkLOc95DPbyjRoiX5IRrzUEDOyUX1yUtriwJp6bHPOYmxNSUG9-gK-MtljHOTQwNNi4ejrXWbK6219-u2g1mypt5cZPH7F-RFwGn7M8f7zPy4-LT982X9vLr5-3m42XrJDWlNUF1vTOdMrVvJXuUQgvRB2QAzFDlJQ5eoYYeBt8bFRC1GDxoVQPTlJ-R7codIu7tMY0HTHc24mgfCjHtLKYy1qZsJ8EYo7kMhgrhXB-Y0qKGynUy-Mr6sLKOS3_wg_NzqVN4An36Mo83dhdvLQVJ68hZJbx9JKT4c_G52MOYnZ8mnH1csmVGaSo6DqpK3_wj3cclzXVW9yqlQBjdVRVbVS7FnJMPv7uhYO_Xbte12_q5fVi7ldXEV1Ou4nnn0x_0f1y_APBJq-E</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2866604879</pqid></control><display><type>article</type><title>Structural basis for the activation of a compact CRISPR-Cas13 nuclease</title><source>Publicly Available Content Database</source><source>Nature</source><source>PubMed Central</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Deng, Xiangyu ; Osikpa, Emmanuel ; Yang, Jie ; Oladeji, Seye J. ; Smith, Jamie ; Gao, Xue ; Gao, Yang</creator><creatorcontrib>Deng, Xiangyu ; Osikpa, Emmanuel ; Yang, Jie ; Oladeji, Seye J. ; Smith, Jamie ; Gao, Xue ; Gao, Yang</creatorcontrib><description>The CRISPR-Cas13 ribonucleases have been widely applied for RNA knockdown and transcriptional modulation owing to their high programmability and specificity. However, the large size of Cas13 effectors and their non-specific RNA cleavage upon target activation limit the adeno-associated virus based delivery of Cas13 systems for therapeutic applications. Herein, we report detailed biochemical and structural characterizations of a compact Cas13 (Cas13bt3) suitable for adeno-associated virus delivery. Distinct from many other Cas13 systems, Cas13bt3 cleaves the target and other nonspecific RNA at internal “UC” sites and is activated in a target length-dependent manner. The cryo-electron microscope structure of Cas13bt3 in a fully active state illustrates the structural basis of Cas13bt3 activation. Guided by the structure, we obtain engineered Cas13bt3 variants with minimal off-target cleavage yet maintained target cleavage activities. In conclusion, our biochemical and structural data illustrate a distinct mechanism for Cas13bt3 activation and guide the engineering of Cas13bt3 applications. The authors present the structure of Cas13bt3 in an activated state, illustrating its target length-dependent activation mechanism, and use it as a guide to develop a high-fidelity Cas13bt3 variant suitable for RNA knockdown and therapeutic applications.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/s41467-023-41501-5</identifier><identifier>PMID: 37730702</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>101/28 ; 13/31 ; 631/337/4041 ; 631/535/1258/1259 ; 82/29 ; 82/80 ; 82/83 ; Cleavage ; CRISPR ; Humanities and Social Sciences ; multidisciplinary ; Nuclease ; Ribonucleic acid ; RNA ; Science ; Science (multidisciplinary) ; Therapeutic applications ; Viruses</subject><ispartof>Nature communications, 2023-09, Vol.14 (1), p.5845-5845, Article 5845</ispartof><rights>The Author(s) 2023</rights><rights>The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Springer Nature Limited 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c518t-8f69bc896802365ba54744bfa2002816e5ade6a70b0deb86faa74de076de02713</citedby><cites>FETCH-LOGICAL-c518t-8f69bc896802365ba54744bfa2002816e5ade6a70b0deb86faa74de076de02713</cites><orcidid>0000-0003-4399-2532 ; 0000-0003-3213-9704 ; 0000-0002-4037-0431 ; 0000-0002-1526-2850 ; 0009-0005-2540-5121</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2866604879/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2866604879?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids></links><search><creatorcontrib>Deng, Xiangyu</creatorcontrib><creatorcontrib>Osikpa, Emmanuel</creatorcontrib><creatorcontrib>Yang, Jie</creatorcontrib><creatorcontrib>Oladeji, Seye J.</creatorcontrib><creatorcontrib>Smith, Jamie</creatorcontrib><creatorcontrib>Gao, Xue</creatorcontrib><creatorcontrib>Gao, Yang</creatorcontrib><title>Structural basis for the activation of a compact CRISPR-Cas13 nuclease</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><description>The CRISPR-Cas13 ribonucleases have been widely applied for RNA knockdown and transcriptional modulation owing to their high programmability and specificity. However, the large size of Cas13 effectors and their non-specific RNA cleavage upon target activation limit the adeno-associated virus based delivery of Cas13 systems for therapeutic applications. Herein, we report detailed biochemical and structural characterizations of a compact Cas13 (Cas13bt3) suitable for adeno-associated virus delivery. Distinct from many other Cas13 systems, Cas13bt3 cleaves the target and other nonspecific RNA at internal “UC” sites and is activated in a target length-dependent manner. The cryo-electron microscope structure of Cas13bt3 in a fully active state illustrates the structural basis of Cas13bt3 activation. Guided by the structure, we obtain engineered Cas13bt3 variants with minimal off-target cleavage yet maintained target cleavage activities. In conclusion, our biochemical and structural data illustrate a distinct mechanism for Cas13bt3 activation and guide the engineering of Cas13bt3 applications. The authors present the structure of Cas13bt3 in an activated state, illustrating its target length-dependent activation mechanism, and use it as a guide to develop a high-fidelity Cas13bt3 variant suitable for RNA knockdown and therapeutic applications.</description><subject>101/28</subject><subject>13/31</subject><subject>631/337/4041</subject><subject>631/535/1258/1259</subject><subject>82/29</subject><subject>82/80</subject><subject>82/83</subject><subject>Cleavage</subject><subject>CRISPR</subject><subject>Humanities and Social Sciences</subject><subject>multidisciplinary</subject><subject>Nuclease</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Therapeutic applications</subject><subject>Viruses</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kU1v1DAQhi0EolXpH-AUiQuXwPjbOSG0orBSJVALZ2vi2NussvFiO5X673GbCigHfBiPxu_7eDRDyGsK7yhw8z4LKpRugfFWUAm0lc_IKQNBW6oZf_5XfkLOc95DPbyjRoiX5IRrzUEDOyUX1yUtriwJp6bHPOYmxNSUG9-gK-MtljHOTQwNNi4ejrXWbK6219-u2g1mypt5cZPH7F-RFwGn7M8f7zPy4-LT982X9vLr5-3m42XrJDWlNUF1vTOdMrVvJXuUQgvRB2QAzFDlJQ5eoYYeBt8bFRC1GDxoVQPTlJ-R7codIu7tMY0HTHc24mgfCjHtLKYy1qZsJ8EYo7kMhgrhXB-Y0qKGynUy-Mr6sLKOS3_wg_NzqVN4An36Mo83dhdvLQVJ68hZJbx9JKT4c_G52MOYnZ8mnH1csmVGaSo6DqpK3_wj3cclzXVW9yqlQBjdVRVbVS7FnJMPv7uhYO_Xbte12_q5fVi7ldXEV1Ou4nnn0x_0f1y_APBJq-E</recordid><startdate>20230920</startdate><enddate>20230920</enddate><creator>Deng, Xiangyu</creator><creator>Osikpa, Emmanuel</creator><creator>Yang, Jie</creator><creator>Oladeji, Seye J.</creator><creator>Smith, Jamie</creator><creator>Gao, Xue</creator><creator>Gao, Yang</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-4399-2532</orcidid><orcidid>https://orcid.org/0000-0003-3213-9704</orcidid><orcidid>https://orcid.org/0000-0002-4037-0431</orcidid><orcidid>https://orcid.org/0000-0002-1526-2850</orcidid><orcidid>https://orcid.org/0009-0005-2540-5121</orcidid></search><sort><creationdate>20230920</creationdate><title>Structural basis for the activation of a compact CRISPR-Cas13 nuclease</title><author>Deng, Xiangyu ; Osikpa, Emmanuel ; Yang, Jie ; Oladeji, Seye J. ; Smith, Jamie ; Gao, Xue ; Gao, Yang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c518t-8f69bc896802365ba54744bfa2002816e5ade6a70b0deb86faa74de076de02713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>101/28</topic><topic>13/31</topic><topic>631/337/4041</topic><topic>631/535/1258/1259</topic><topic>82/29</topic><topic>82/80</topic><topic>82/83</topic><topic>Cleavage</topic><topic>CRISPR</topic><topic>Humanities and Social Sciences</topic><topic>multidisciplinary</topic><topic>Nuclease</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Therapeutic applications</topic><topic>Viruses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Deng, Xiangyu</creatorcontrib><creatorcontrib>Osikpa, Emmanuel</creatorcontrib><creatorcontrib>Yang, Jie</creatorcontrib><creatorcontrib>Oladeji, Seye J.</creatorcontrib><creatorcontrib>Smith, Jamie</creatorcontrib><creatorcontrib>Gao, Xue</creatorcontrib><creatorcontrib>Gao, Yang</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Biological Science Journals</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Deng, Xiangyu</au><au>Osikpa, Emmanuel</au><au>Yang, Jie</au><au>Oladeji, Seye J.</au><au>Smith, Jamie</au><au>Gao, Xue</au><au>Gao, Yang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structural basis for the activation of a compact CRISPR-Cas13 nuclease</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><date>2023-09-20</date><risdate>2023</risdate><volume>14</volume><issue>1</issue><spage>5845</spage><epage>5845</epage><pages>5845-5845</pages><artnum>5845</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>The CRISPR-Cas13 ribonucleases have been widely applied for RNA knockdown and transcriptional modulation owing to their high programmability and specificity. However, the large size of Cas13 effectors and their non-specific RNA cleavage upon target activation limit the adeno-associated virus based delivery of Cas13 systems for therapeutic applications. Herein, we report detailed biochemical and structural characterizations of a compact Cas13 (Cas13bt3) suitable for adeno-associated virus delivery. Distinct from many other Cas13 systems, Cas13bt3 cleaves the target and other nonspecific RNA at internal “UC” sites and is activated in a target length-dependent manner. The cryo-electron microscope structure of Cas13bt3 in a fully active state illustrates the structural basis of Cas13bt3 activation. Guided by the structure, we obtain engineered Cas13bt3 variants with minimal off-target cleavage yet maintained target cleavage activities. In conclusion, our biochemical and structural data illustrate a distinct mechanism for Cas13bt3 activation and guide the engineering of Cas13bt3 applications. The authors present the structure of Cas13bt3 in an activated state, illustrating its target length-dependent activation mechanism, and use it as a guide to develop a high-fidelity Cas13bt3 variant suitable for RNA knockdown and therapeutic applications.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>37730702</pmid><doi>10.1038/s41467-023-41501-5</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-4399-2532</orcidid><orcidid>https://orcid.org/0000-0003-3213-9704</orcidid><orcidid>https://orcid.org/0000-0002-4037-0431</orcidid><orcidid>https://orcid.org/0000-0002-1526-2850</orcidid><orcidid>https://orcid.org/0009-0005-2540-5121</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2041-1723
ispartof Nature communications, 2023-09, Vol.14 (1), p.5845-5845, Article 5845
issn 2041-1723
2041-1723
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_950888735f8144ccbf2674f26b86c5fe
source Publicly Available Content Database; Nature; PubMed Central; Springer Nature - nature.com Journals - Fully Open Access
subjects 101/28
13/31
631/337/4041
631/535/1258/1259
82/29
82/80
82/83
Cleavage
CRISPR
Humanities and Social Sciences
multidisciplinary
Nuclease
Ribonucleic acid
RNA
Science
Science (multidisciplinary)
Therapeutic applications
Viruses
title Structural basis for the activation of a compact CRISPR-Cas13 nuclease
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T07%3A45%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structural%20basis%20for%20the%20activation%20of%20a%20compact%20CRISPR-Cas13%20nuclease&rft.jtitle=Nature%20communications&rft.au=Deng,%20Xiangyu&rft.date=2023-09-20&rft.volume=14&rft.issue=1&rft.spage=5845&rft.epage=5845&rft.pages=5845-5845&rft.artnum=5845&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/s41467-023-41501-5&rft_dat=%3Cproquest_doaj_%3E2866604879%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c518t-8f69bc896802365ba54744bfa2002816e5ade6a70b0deb86faa74de076de02713%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2866604879&rft_id=info:pmid/37730702&rfr_iscdi=true