Loading…

Fermented Antler Improves Endurance during Exercise Performance by Increasing Mitochondrial Biogenesis and Muscle Strength in Mice

In this study, we investigated whether antler fermented with lactic acid bacteria (LAB) increases mitochondrial biogenesis and muscle strength in vitro and in vivo. LAB from a strain library were grown in antler extract agar at the Yakult Central Research Institute of Korea. Isolated LAB, named Lact...

Full description

Saved in:
Bibliographic Details
Published in:Applied sciences 2021-06, Vol.11 (12), p.5386
Main Authors: Jung, Seongeun, Kim, Sung-Hwan, Jeung, Woonhee, Ra, Jehyun, Heo, Keon, Shim, Jae-Jung, Lee, Jung-Lyoul
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this study, we investigated whether antler fermented with lactic acid bacteria (LAB) increases mitochondrial biogenesis and muscle strength in vitro and in vivo. LAB from a strain library were grown in antler extract agar at the Yakult Central Research Institute of Korea. Isolated LAB, named Lactobacillus curvatus HY7602, were used to ferment antlers. Analysis of the effects of fermented antler (FA) revealed that it enhanced the insulin-like growth factor 1 (IGF-I), signaling pathway and mitochondrial metabolic activity in mouse skeletal myotube (C2C12) cells. Next, we evaluated the effect of non-fermented antler (NFA) and FA on exercise performance in C57BL/6J mice. The results showed that HY7602-FA increased treadmill exercise capacity and forced swimming endurance. Furthermore, blood markers associated with muscle fatigue, endurance, and energy supply (e.g., alanine aminotransferase, lactate dehydrogenase, creatinine, creatine kinase, and lactate) in the FA-intake group were lower than in the NFA-intake group. In addition, the expression index of genes associated with muscle protein synthesis, and with mitochondrial energy production and supply, in muscle tissue was remarkably higher in the FA group than in the control and NFA groups. Taken together, these results suggested that HY7602-FA may be an effective functional food and health supplement.
ISSN:2076-3417
2076-3417
DOI:10.3390/app11125386