Loading…

A spatial analysis for geothermal energy exploration using bivariate predictive modelling

The development of predictive maps for geothermal resources is fundamental for its exploration across Nigeria. In this study, spatial exploration data consisting of geology, geophysics and remote sensing was initially analysed using the Shannon entropy method to ascertain a correlation to known geot...

Full description

Saved in:
Bibliographic Details
Published in:Scientific reports 2021-10, Vol.11 (1), p.19755-19755, Article 19755
Main Authors: Tende, Andongma W., Aminu, Mohammed D., Gajere, Jiriko N.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The development of predictive maps for geothermal resources is fundamental for its exploration across Nigeria. In this study, spatial exploration data consisting of geology, geophysics and remote sensing was initially analysed using the Shannon entropy method to ascertain a correlation to known geothermal manifestation. The application of statistical index, frequency ratio and weight of evidence modelling was then used for integrating every predictive data for the generation of geothermal favourability maps. The receiver operating/area under curve (ROC/AUC) analysis was then employed to ascertain the prediction accuracy for all models. Basically, all spatial data displayed a significant statistical correlation with geothermal occurrence. The integration of these data suggests a high probability for geothermal manifestation within the central part of the study location. Accuracy assessment for all models using the ROC/AUC analysis suggests a high prediction capability (above 75%) for all models. Highest prediction accuracy was obtained from the frequency ratio (83.3%) followed by the statistical index model (81.3%) then the weight of evidence model (79.6%). Evidence from spatial and predictive analysis suggests geological data integration is highly efficient for geothermal exploration across the middle Benue trough.
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-021-99244-6