Loading…
DSTree: A Spatio-Temporal Indexing Data Structure for Distributed Networks
The widespread availability of tools to collect and share spatial data enables us to produce a large amount of geographic information on a daily basis. This enormous production of spatial data requires scalable data management systems. Geospatial architectures have changed from clusters to cloud arc...
Saved in:
Published in: | Mathematical and computational applications 2024-06, Vol.29 (3), p.42 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The widespread availability of tools to collect and share spatial data enables us to produce a large amount of geographic information on a daily basis. This enormous production of spatial data requires scalable data management systems. Geospatial architectures have changed from clusters to cloud architectures and more parallel and distributed processing platforms to be able to tackle these challenges. Peer-to-peer (P2P) systems as a backbone of distributed systems have been established in several application areas such as web3, blockchains, and crypto-currencies. Unlike centralized systems, data storage in P2P networks is distributed across network nodes, providing scalability and no single point of failure. However, managing and processing queries on these networks has always been challenging. In this work, we propose a spatio-temporal indexing data structure, DSTree. DSTree does not require additional Distributed Hash Trees (DHTs) to perform multi-dimensional range queries. Inserting a piece of new geographic information updates only a portion of the tree structure and does not impact the entire graph of the data. For example, for time-series data, such as storing sensor data, the DSTree performs around 40% faster in spatio-temporal queries for small and medium datasets. Despite the advantages of our proposed framework, challenges such as 20% slower insertion speed or semantic query capabilities remain. We conclude that more significant research effort from GIScience and related fields in developing decentralized applications is needed. The need for the standardization of different geographic information when sharing data on the IPFS network is one of the requirements. |
---|---|
ISSN: | 2297-8747 1300-686X 2297-8747 |
DOI: | 10.3390/mca29030042 |