Loading…
Kalman Filter Based Tracking in an Video Surveillance System
In this paper we have developed a Matlab/Simulink based model for monitoring a contact in a video surveillance sequence. For the segmentation process and corect identification of a contact in a surveillance video, we have used the Horn-Schunk optical flow algorithm. The position and the behavior of...
Saved in:
Published in: | Advances in electrical and computer engineering 2010-05, Vol.10 (2), p.30-34 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c348t-b778d328677cf8d8add11ffe6dc20493e54b9ccc1b09d8fedd88d429ca459f783 |
---|---|
cites | cdi_FETCH-LOGICAL-c348t-b778d328677cf8d8add11ffe6dc20493e54b9ccc1b09d8fedd88d429ca459f783 |
container_end_page | 34 |
container_issue | 2 |
container_start_page | 30 |
container_title | Advances in electrical and computer engineering |
container_volume | 10 |
creator | SULIMAN, C. CRUCERU, C. MOLDOVEANU, F. |
description | In this paper we have developed a Matlab/Simulink based model for monitoring a contact in a video surveillance sequence. For the segmentation process and corect identification of a contact in a surveillance video, we have used the Horn-Schunk optical flow algorithm. The position and the behavior of the correctly detected contact were monitored with the help of the traditional Kalman filter. After that we have compared the results obtained from the optical flow method with the ones obtained from the Kalman filter, and we show the correct functionality of the Kalman filter based tracking. The tests were performed using video data taken with the help of a fix camera. The tested algorithm has shown promising results. |
doi_str_mv | 10.4316/aece.2010.02005 |
format | article |
fullrecord | <record><control><sourceid>doaj_cross</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_9535ae875d39420bbca02c53b6285e9a</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_9535ae875d39420bbca02c53b6285e9a</doaj_id><sourcerecordid>oai_doaj_org_article_9535ae875d39420bbca02c53b6285e9a</sourcerecordid><originalsourceid>FETCH-LOGICAL-c348t-b778d328677cf8d8add11ffe6dc20493e54b9ccc1b09d8fedd88d429ca459f783</originalsourceid><addsrcrecordid>eNo9kMtOwzAQRS0EElXpmm1-IK3jR2xLbKCiUFGJRQtba2JPKkOaIDsg9e9JWsRq7twrncUh5Lagc8GLcgHocM7o8FJGqbwgk0ILkauS0sshS81yJYS8JrOUQkWFUEwzXk7I3Qs0B2izVWh6jNkDJPTZLoL7DO0-C202bO_BY5dtv-MPhqaB1mG2PaYeDzfkqoYm4ezvTsnb6nG3fM43r0_r5f0md1zoPq-U0p4zXSrlau01eF8UdY2ld4wKw1GKyjjniooar2v0XmsvmHEgpKmV5lOyPnN9Bx_2K4YDxKPtINhT0cW9hdgH16A1kktAraTnRjBaVQ4oc5JXJdMSDQysxZnlYpdSxPqfV1A7urSjSzu6tCeX_Bd6qGcC</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Kalman Filter Based Tracking in an Video Surveillance System</title><source>IngentaConnect Journals</source><creator>SULIMAN, C. ; CRUCERU, C. ; MOLDOVEANU, F.</creator><creatorcontrib>SULIMAN, C. ; CRUCERU, C. ; MOLDOVEANU, F.</creatorcontrib><description>In this paper we have developed a Matlab/Simulink based model for monitoring a contact in a video surveillance sequence. For the segmentation process and corect identification of a contact in a surveillance video, we have used the Horn-Schunk optical flow algorithm. The position and the behavior of the correctly detected contact were monitored with the help of the traditional Kalman filter. After that we have compared the results obtained from the optical flow method with the ones obtained from the Kalman filter, and we show the correct functionality of the Kalman filter based tracking. The tests were performed using video data taken with the help of a fix camera. The tested algorithm has shown promising results.</description><identifier>ISSN: 1582-7445</identifier><identifier>EISSN: 1844-7600</identifier><identifier>DOI: 10.4316/aece.2010.02005</identifier><language>eng</language><publisher>Stefan cel Mare University of Suceava</publisher><subject>image processing ; Kalman filtering ; optical flow ; tracking ; video surveillance system</subject><ispartof>Advances in electrical and computer engineering, 2010-05, Vol.10 (2), p.30-34</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c348t-b778d328677cf8d8add11ffe6dc20493e54b9ccc1b09d8fedd88d429ca459f783</citedby><cites>FETCH-LOGICAL-c348t-b778d328677cf8d8add11ffe6dc20493e54b9ccc1b09d8fedd88d429ca459f783</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>SULIMAN, C.</creatorcontrib><creatorcontrib>CRUCERU, C.</creatorcontrib><creatorcontrib>MOLDOVEANU, F.</creatorcontrib><title>Kalman Filter Based Tracking in an Video Surveillance System</title><title>Advances in electrical and computer engineering</title><description>In this paper we have developed a Matlab/Simulink based model for monitoring a contact in a video surveillance sequence. For the segmentation process and corect identification of a contact in a surveillance video, we have used the Horn-Schunk optical flow algorithm. The position and the behavior of the correctly detected contact were monitored with the help of the traditional Kalman filter. After that we have compared the results obtained from the optical flow method with the ones obtained from the Kalman filter, and we show the correct functionality of the Kalman filter based tracking. The tests were performed using video data taken with the help of a fix camera. The tested algorithm has shown promising results.</description><subject>image processing</subject><subject>Kalman filtering</subject><subject>optical flow</subject><subject>tracking</subject><subject>video surveillance system</subject><issn>1582-7445</issn><issn>1844-7600</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNo9kMtOwzAQRS0EElXpmm1-IK3jR2xLbKCiUFGJRQtba2JPKkOaIDsg9e9JWsRq7twrncUh5Lagc8GLcgHocM7o8FJGqbwgk0ILkauS0sshS81yJYS8JrOUQkWFUEwzXk7I3Qs0B2izVWh6jNkDJPTZLoL7DO0-C202bO_BY5dtv-MPhqaB1mG2PaYeDzfkqoYm4ezvTsnb6nG3fM43r0_r5f0md1zoPq-U0p4zXSrlau01eF8UdY2ld4wKw1GKyjjniooar2v0XmsvmHEgpKmV5lOyPnN9Bx_2K4YDxKPtINhT0cW9hdgH16A1kktAraTnRjBaVQ4oc5JXJdMSDQysxZnlYpdSxPqfV1A7urSjSzu6tCeX_Bd6qGcC</recordid><startdate>201005</startdate><enddate>201005</enddate><creator>SULIMAN, C.</creator><creator>CRUCERU, C.</creator><creator>MOLDOVEANU, F.</creator><general>Stefan cel Mare University of Suceava</general><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope></search><sort><creationdate>201005</creationdate><title>Kalman Filter Based Tracking in an Video Surveillance System</title><author>SULIMAN, C. ; CRUCERU, C. ; MOLDOVEANU, F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c348t-b778d328677cf8d8add11ffe6dc20493e54b9ccc1b09d8fedd88d429ca459f783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>image processing</topic><topic>Kalman filtering</topic><topic>optical flow</topic><topic>tracking</topic><topic>video surveillance system</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>SULIMAN, C.</creatorcontrib><creatorcontrib>CRUCERU, C.</creatorcontrib><creatorcontrib>MOLDOVEANU, F.</creatorcontrib><collection>CrossRef</collection><collection>Open Access: DOAJ - Directory of Open Access Journals</collection><jtitle>Advances in electrical and computer engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>SULIMAN, C.</au><au>CRUCERU, C.</au><au>MOLDOVEANU, F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Kalman Filter Based Tracking in an Video Surveillance System</atitle><jtitle>Advances in electrical and computer engineering</jtitle><date>2010-05</date><risdate>2010</risdate><volume>10</volume><issue>2</issue><spage>30</spage><epage>34</epage><pages>30-34</pages><issn>1582-7445</issn><eissn>1844-7600</eissn><abstract>In this paper we have developed a Matlab/Simulink based model for monitoring a contact in a video surveillance sequence. For the segmentation process and corect identification of a contact in a surveillance video, we have used the Horn-Schunk optical flow algorithm. The position and the behavior of the correctly detected contact were monitored with the help of the traditional Kalman filter. After that we have compared the results obtained from the optical flow method with the ones obtained from the Kalman filter, and we show the correct functionality of the Kalman filter based tracking. The tests were performed using video data taken with the help of a fix camera. The tested algorithm has shown promising results.</abstract><pub>Stefan cel Mare University of Suceava</pub><doi>10.4316/aece.2010.02005</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1582-7445 |
ispartof | Advances in electrical and computer engineering, 2010-05, Vol.10 (2), p.30-34 |
issn | 1582-7445 1844-7600 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_9535ae875d39420bbca02c53b6285e9a |
source | IngentaConnect Journals |
subjects | image processing Kalman filtering optical flow tracking video surveillance system |
title | Kalman Filter Based Tracking in an Video Surveillance System |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T12%3A56%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-doaj_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Kalman%20Filter%20Based%20Tracking%20in%20an%20Video%20Surveillance%20System&rft.jtitle=Advances%20in%20electrical%20and%20computer%20engineering&rft.au=SULIMAN,%20C.&rft.date=2010-05&rft.volume=10&rft.issue=2&rft.spage=30&rft.epage=34&rft.pages=30-34&rft.issn=1582-7445&rft.eissn=1844-7600&rft_id=info:doi/10.4316/aece.2010.02005&rft_dat=%3Cdoaj_cross%3Eoai_doaj_org_article_9535ae875d39420bbca02c53b6285e9a%3C/doaj_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c348t-b778d328677cf8d8add11ffe6dc20493e54b9ccc1b09d8fedd88d429ca459f783%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |