Loading…
Big data- and artificial intelligence-based hot-spot analysis of COVID-19: Gauteng, South Africa, as a case study
The coronavirus disease 2019 (COVID-19) has developed into a pandemic. Data-driven techniques can be used to inform and guide public health decision- and policy-makers. In generalizing the spread of a virus over a large area, such as a province, it must be assumed that the transmission occurs as a s...
Saved in:
Published in: | BMC medical informatics and decision making 2023-01, Vol.23 (1), p.19-19, Article 19 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c563t-fa7ff8d5801937e2ebf60ca1fab6084b1259fb03ef50e7fd8253574ab8a0bf293 |
---|---|
cites | cdi_FETCH-LOGICAL-c563t-fa7ff8d5801937e2ebf60ca1fab6084b1259fb03ef50e7fd8253574ab8a0bf293 |
container_end_page | 19 |
container_issue | 1 |
container_start_page | 19 |
container_title | BMC medical informatics and decision making |
container_volume | 23 |
creator | Lieberman, Benjamin Kong, Jude Dzevela Gusinow, Roy Asgary, Ali Bragazzi, Nicola Luigi Choma, Joshua Dahbi, Salah-Eddine Hayashi, Kentaro Kar, Deepak Kawonga, Mary Mbada, Mduduzi Monnakgotla, Kgomotso Orbinski, James Ruan, Xifeng Stevenson, Finn Wu, Jianhong Mellado, Bruce |
description | The coronavirus disease 2019 (COVID-19) has developed into a pandemic. Data-driven techniques can be used to inform and guide public health decision- and policy-makers. In generalizing the spread of a virus over a large area, such as a province, it must be assumed that the transmission occurs as a stochastic process. It is therefore very difficult for policy and decision makers to understand and visualize the location specific dynamics of the virus on a more granular level. A primary concern is exposing local virus hot-spots, in order to inform and implement non-pharmaceutical interventions. A hot-spot is defined as an area experiencing exponential growth relative to the generalised growth of the pandemic. This paper uses the first and second waves of the COVID-19 epidemic in Gauteng Province, South Africa, as a case study. The study aims provide a data-driven methodology and comprehensive case study to expose location specific virus dynamics within a given area. The methodology uses an unsupervised Gaussian Mixture model to cluster cases at a desired granularity. This is combined with an epidemiological analysis to quantify each cluster's severity, progression and whether it can be defined as a hot-spot. |
doi_str_mv | 10.1186/s12911-023-02098-3 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_9539e1a324c341828e4500cde2dbdd7d</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A734840548</galeid><doaj_id>oai_doaj_org_article_9539e1a324c341828e4500cde2dbdd7d</doaj_id><sourcerecordid>A734840548</sourcerecordid><originalsourceid>FETCH-LOGICAL-c563t-fa7ff8d5801937e2ebf60ca1fab6084b1259fb03ef50e7fd8253574ab8a0bf293</originalsourceid><addsrcrecordid>eNptksuO0zAUhiMEYi7wAiyQJTYsJoMvSWyzQCoFhkojzYLL1jrxJXWVxp3YQerbj9sO1RRhy7J1_J_PPkd_Ubwh-JoQ0XyIhEpCSkxZXliKkj0rzknFadnIij9_cj4rLmJcYUy4YPXL4ow1HDPC2Hlx_9l3yECCEsFgEIzJO6899MgPyfa97-ygbdlCtAYtQyrjJqQshX4bfUTBofnd78WXksiP6AamZIfuCv0IU1qimRu9hisEEQHSGYBimsz2VfHCQR_t68f9svj17evP-ffy9u5mMZ_dlrpuWCodcOeEqQUmknFLbesarIE4aBssqpbQWroWM-tqbLkzgtas5hW0AnDrqGSXxeLANQFWajP6NYxbFcCrfSCMndpVq3urZM2kJcBopVlFBBW2qjHWxlLTGsNNZn06sDZTu7ZG2yGN0J9AT28Gv1Rd-KOk4JLWPAPePwLGcD_ZmNTaR537C4MNU1SUc0wI5xJn6bt_pKswjbnhexXnDduNo6qDXIAfXMjv6h1UzTirRIXrSmTV9X9UeRq79joM1vkcP0mghwQ9hhhH6441Eqx2plMH06lsOrU3ndr95e3T7hxT_rqMPQA8Nc_V</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2777763333</pqid></control><display><type>article</type><title>Big data- and artificial intelligence-based hot-spot analysis of COVID-19: Gauteng, South Africa, as a case study</title><source>PubMed Central (Open Access)</source><source>Publicly Available Content (ProQuest)</source><source>Coronavirus Research Database</source><creator>Lieberman, Benjamin ; Kong, Jude Dzevela ; Gusinow, Roy ; Asgary, Ali ; Bragazzi, Nicola Luigi ; Choma, Joshua ; Dahbi, Salah-Eddine ; Hayashi, Kentaro ; Kar, Deepak ; Kawonga, Mary ; Mbada, Mduduzi ; Monnakgotla, Kgomotso ; Orbinski, James ; Ruan, Xifeng ; Stevenson, Finn ; Wu, Jianhong ; Mellado, Bruce</creator><creatorcontrib>Lieberman, Benjamin ; Kong, Jude Dzevela ; Gusinow, Roy ; Asgary, Ali ; Bragazzi, Nicola Luigi ; Choma, Joshua ; Dahbi, Salah-Eddine ; Hayashi, Kentaro ; Kar, Deepak ; Kawonga, Mary ; Mbada, Mduduzi ; Monnakgotla, Kgomotso ; Orbinski, James ; Ruan, Xifeng ; Stevenson, Finn ; Wu, Jianhong ; Mellado, Bruce</creatorcontrib><description>The coronavirus disease 2019 (COVID-19) has developed into a pandemic. Data-driven techniques can be used to inform and guide public health decision- and policy-makers. In generalizing the spread of a virus over a large area, such as a province, it must be assumed that the transmission occurs as a stochastic process. It is therefore very difficult for policy and decision makers to understand and visualize the location specific dynamics of the virus on a more granular level. A primary concern is exposing local virus hot-spots, in order to inform and implement non-pharmaceutical interventions. A hot-spot is defined as an area experiencing exponential growth relative to the generalised growth of the pandemic. This paper uses the first and second waves of the COVID-19 epidemic in Gauteng Province, South Africa, as a case study. The study aims provide a data-driven methodology and comprehensive case study to expose location specific virus dynamics within a given area. The methodology uses an unsupervised Gaussian Mixture model to cluster cases at a desired granularity. This is combined with an epidemiological analysis to quantify each cluster's severity, progression and whether it can be defined as a hot-spot.</description><identifier>ISSN: 1472-6947</identifier><identifier>EISSN: 1472-6947</identifier><identifier>DOI: 10.1186/s12911-023-02098-3</identifier><identifier>PMID: 36703133</identifier><language>eng</language><publisher>England: BioMed Central Ltd</publisher><subject>Analysis ; Artificial Intelligence ; Big Data ; Case reports ; Clustering ; Clusters ; Control intervention ; Coronaviruses ; COVID-19 ; COVID-19 - epidemiology ; Disease hot spots ; Disease transmission ; Epidemics ; Epidemiology ; Evaluation ; Gauteng department of health ; Health informatics ; Hot-spot ; Humans ; Localization ; Pandemics ; Probabilistic models ; Public health ; Risk adjusted strategy ; Severe acute respiratory syndrome coronavirus 2 ; South Africa ; South Africa - epidemiology ; Statistical analysis ; Stochastic models ; Stochastic processes ; Viral diseases ; Viruses</subject><ispartof>BMC medical informatics and decision making, 2023-01, Vol.23 (1), p.19-19, Article 19</ispartof><rights>2023. The Author(s).</rights><rights>COPYRIGHT 2023 BioMed Central Ltd.</rights><rights>2023. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>The Author(s) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c563t-fa7ff8d5801937e2ebf60ca1fab6084b1259fb03ef50e7fd8253574ab8a0bf293</citedby><cites>FETCH-LOGICAL-c563t-fa7ff8d5801937e2ebf60ca1fab6084b1259fb03ef50e7fd8253574ab8a0bf293</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9879257/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2777763333?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25744,27915,27916,37003,37004,38507,43886,44581,53782,53784</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36703133$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lieberman, Benjamin</creatorcontrib><creatorcontrib>Kong, Jude Dzevela</creatorcontrib><creatorcontrib>Gusinow, Roy</creatorcontrib><creatorcontrib>Asgary, Ali</creatorcontrib><creatorcontrib>Bragazzi, Nicola Luigi</creatorcontrib><creatorcontrib>Choma, Joshua</creatorcontrib><creatorcontrib>Dahbi, Salah-Eddine</creatorcontrib><creatorcontrib>Hayashi, Kentaro</creatorcontrib><creatorcontrib>Kar, Deepak</creatorcontrib><creatorcontrib>Kawonga, Mary</creatorcontrib><creatorcontrib>Mbada, Mduduzi</creatorcontrib><creatorcontrib>Monnakgotla, Kgomotso</creatorcontrib><creatorcontrib>Orbinski, James</creatorcontrib><creatorcontrib>Ruan, Xifeng</creatorcontrib><creatorcontrib>Stevenson, Finn</creatorcontrib><creatorcontrib>Wu, Jianhong</creatorcontrib><creatorcontrib>Mellado, Bruce</creatorcontrib><title>Big data- and artificial intelligence-based hot-spot analysis of COVID-19: Gauteng, South Africa, as a case study</title><title>BMC medical informatics and decision making</title><addtitle>BMC Med Inform Decis Mak</addtitle><description>The coronavirus disease 2019 (COVID-19) has developed into a pandemic. Data-driven techniques can be used to inform and guide public health decision- and policy-makers. In generalizing the spread of a virus over a large area, such as a province, it must be assumed that the transmission occurs as a stochastic process. It is therefore very difficult for policy and decision makers to understand and visualize the location specific dynamics of the virus on a more granular level. A primary concern is exposing local virus hot-spots, in order to inform and implement non-pharmaceutical interventions. A hot-spot is defined as an area experiencing exponential growth relative to the generalised growth of the pandemic. This paper uses the first and second waves of the COVID-19 epidemic in Gauteng Province, South Africa, as a case study. The study aims provide a data-driven methodology and comprehensive case study to expose location specific virus dynamics within a given area. The methodology uses an unsupervised Gaussian Mixture model to cluster cases at a desired granularity. This is combined with an epidemiological analysis to quantify each cluster's severity, progression and whether it can be defined as a hot-spot.</description><subject>Analysis</subject><subject>Artificial Intelligence</subject><subject>Big Data</subject><subject>Case reports</subject><subject>Clustering</subject><subject>Clusters</subject><subject>Control intervention</subject><subject>Coronaviruses</subject><subject>COVID-19</subject><subject>COVID-19 - epidemiology</subject><subject>Disease hot spots</subject><subject>Disease transmission</subject><subject>Epidemics</subject><subject>Epidemiology</subject><subject>Evaluation</subject><subject>Gauteng department of health</subject><subject>Health informatics</subject><subject>Hot-spot</subject><subject>Humans</subject><subject>Localization</subject><subject>Pandemics</subject><subject>Probabilistic models</subject><subject>Public health</subject><subject>Risk adjusted strategy</subject><subject>Severe acute respiratory syndrome coronavirus 2</subject><subject>South Africa</subject><subject>South Africa - epidemiology</subject><subject>Statistical analysis</subject><subject>Stochastic models</subject><subject>Stochastic processes</subject><subject>Viral diseases</subject><subject>Viruses</subject><issn>1472-6947</issn><issn>1472-6947</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>COVID</sourceid><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptksuO0zAUhiMEYi7wAiyQJTYsJoMvSWyzQCoFhkojzYLL1jrxJXWVxp3YQerbj9sO1RRhy7J1_J_PPkd_Ubwh-JoQ0XyIhEpCSkxZXliKkj0rzknFadnIij9_cj4rLmJcYUy4YPXL4ow1HDPC2Hlx_9l3yECCEsFgEIzJO6899MgPyfa97-ygbdlCtAYtQyrjJqQshX4bfUTBofnd78WXksiP6AamZIfuCv0IU1qimRu9hisEEQHSGYBimsz2VfHCQR_t68f9svj17evP-ffy9u5mMZ_dlrpuWCodcOeEqQUmknFLbesarIE4aBssqpbQWroWM-tqbLkzgtas5hW0AnDrqGSXxeLANQFWajP6NYxbFcCrfSCMndpVq3urZM2kJcBopVlFBBW2qjHWxlLTGsNNZn06sDZTu7ZG2yGN0J9AT28Gv1Rd-KOk4JLWPAPePwLGcD_ZmNTaR537C4MNU1SUc0wI5xJn6bt_pKswjbnhexXnDduNo6qDXIAfXMjv6h1UzTirRIXrSmTV9X9UeRq79joM1vkcP0mghwQ9hhhH6441Eqx2plMH06lsOrU3ndr95e3T7hxT_rqMPQA8Nc_V</recordid><startdate>20230126</startdate><enddate>20230126</enddate><creator>Lieberman, Benjamin</creator><creator>Kong, Jude Dzevela</creator><creator>Gusinow, Roy</creator><creator>Asgary, Ali</creator><creator>Bragazzi, Nicola Luigi</creator><creator>Choma, Joshua</creator><creator>Dahbi, Salah-Eddine</creator><creator>Hayashi, Kentaro</creator><creator>Kar, Deepak</creator><creator>Kawonga, Mary</creator><creator>Mbada, Mduduzi</creator><creator>Monnakgotla, Kgomotso</creator><creator>Orbinski, James</creator><creator>Ruan, Xifeng</creator><creator>Stevenson, Finn</creator><creator>Wu, Jianhong</creator><creator>Mellado, Bruce</creator><general>BioMed Central Ltd</general><general>BioMed Central</general><general>BMC</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7SC</scope><scope>7X7</scope><scope>7XB</scope><scope>88C</scope><scope>88E</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>COVID</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M0S</scope><scope>M0T</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20230126</creationdate><title>Big data- and artificial intelligence-based hot-spot analysis of COVID-19: Gauteng, South Africa, as a case study</title><author>Lieberman, Benjamin ; Kong, Jude Dzevela ; Gusinow, Roy ; Asgary, Ali ; Bragazzi, Nicola Luigi ; Choma, Joshua ; Dahbi, Salah-Eddine ; Hayashi, Kentaro ; Kar, Deepak ; Kawonga, Mary ; Mbada, Mduduzi ; Monnakgotla, Kgomotso ; Orbinski, James ; Ruan, Xifeng ; Stevenson, Finn ; Wu, Jianhong ; Mellado, Bruce</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c563t-fa7ff8d5801937e2ebf60ca1fab6084b1259fb03ef50e7fd8253574ab8a0bf293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Analysis</topic><topic>Artificial Intelligence</topic><topic>Big Data</topic><topic>Case reports</topic><topic>Clustering</topic><topic>Clusters</topic><topic>Control intervention</topic><topic>Coronaviruses</topic><topic>COVID-19</topic><topic>COVID-19 - epidemiology</topic><topic>Disease hot spots</topic><topic>Disease transmission</topic><topic>Epidemics</topic><topic>Epidemiology</topic><topic>Evaluation</topic><topic>Gauteng department of health</topic><topic>Health informatics</topic><topic>Hot-spot</topic><topic>Humans</topic><topic>Localization</topic><topic>Pandemics</topic><topic>Probabilistic models</topic><topic>Public health</topic><topic>Risk adjusted strategy</topic><topic>Severe acute respiratory syndrome coronavirus 2</topic><topic>South Africa</topic><topic>South Africa - epidemiology</topic><topic>Statistical analysis</topic><topic>Stochastic models</topic><topic>Stochastic processes</topic><topic>Viral diseases</topic><topic>Viruses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lieberman, Benjamin</creatorcontrib><creatorcontrib>Kong, Jude Dzevela</creatorcontrib><creatorcontrib>Gusinow, Roy</creatorcontrib><creatorcontrib>Asgary, Ali</creatorcontrib><creatorcontrib>Bragazzi, Nicola Luigi</creatorcontrib><creatorcontrib>Choma, Joshua</creatorcontrib><creatorcontrib>Dahbi, Salah-Eddine</creatorcontrib><creatorcontrib>Hayashi, Kentaro</creatorcontrib><creatorcontrib>Kar, Deepak</creatorcontrib><creatorcontrib>Kawonga, Mary</creatorcontrib><creatorcontrib>Mbada, Mduduzi</creatorcontrib><creatorcontrib>Monnakgotla, Kgomotso</creatorcontrib><creatorcontrib>Orbinski, James</creatorcontrib><creatorcontrib>Ruan, Xifeng</creatorcontrib><creatorcontrib>Stevenson, Finn</creatorcontrib><creatorcontrib>Wu, Jianhong</creatorcontrib><creatorcontrib>Mellado, Bruce</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Healthcare Administration Database (Alumni)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Biological Sciences</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>ProQuest Healthcare Administration Database</collection><collection>PML(ProQuest Medical Library)</collection><collection>Biological Science Database</collection><collection>ProQuest Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>BMC medical informatics and decision making</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lieberman, Benjamin</au><au>Kong, Jude Dzevela</au><au>Gusinow, Roy</au><au>Asgary, Ali</au><au>Bragazzi, Nicola Luigi</au><au>Choma, Joshua</au><au>Dahbi, Salah-Eddine</au><au>Hayashi, Kentaro</au><au>Kar, Deepak</au><au>Kawonga, Mary</au><au>Mbada, Mduduzi</au><au>Monnakgotla, Kgomotso</au><au>Orbinski, James</au><au>Ruan, Xifeng</au><au>Stevenson, Finn</au><au>Wu, Jianhong</au><au>Mellado, Bruce</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Big data- and artificial intelligence-based hot-spot analysis of COVID-19: Gauteng, South Africa, as a case study</atitle><jtitle>BMC medical informatics and decision making</jtitle><addtitle>BMC Med Inform Decis Mak</addtitle><date>2023-01-26</date><risdate>2023</risdate><volume>23</volume><issue>1</issue><spage>19</spage><epage>19</epage><pages>19-19</pages><artnum>19</artnum><issn>1472-6947</issn><eissn>1472-6947</eissn><abstract>The coronavirus disease 2019 (COVID-19) has developed into a pandemic. Data-driven techniques can be used to inform and guide public health decision- and policy-makers. In generalizing the spread of a virus over a large area, such as a province, it must be assumed that the transmission occurs as a stochastic process. It is therefore very difficult for policy and decision makers to understand and visualize the location specific dynamics of the virus on a more granular level. A primary concern is exposing local virus hot-spots, in order to inform and implement non-pharmaceutical interventions. A hot-spot is defined as an area experiencing exponential growth relative to the generalised growth of the pandemic. This paper uses the first and second waves of the COVID-19 epidemic in Gauteng Province, South Africa, as a case study. The study aims provide a data-driven methodology and comprehensive case study to expose location specific virus dynamics within a given area. The methodology uses an unsupervised Gaussian Mixture model to cluster cases at a desired granularity. This is combined with an epidemiological analysis to quantify each cluster's severity, progression and whether it can be defined as a hot-spot.</abstract><cop>England</cop><pub>BioMed Central Ltd</pub><pmid>36703133</pmid><doi>10.1186/s12911-023-02098-3</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1472-6947 |
ispartof | BMC medical informatics and decision making, 2023-01, Vol.23 (1), p.19-19, Article 19 |
issn | 1472-6947 1472-6947 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_9539e1a324c341828e4500cde2dbdd7d |
source | PubMed Central (Open Access); Publicly Available Content (ProQuest); Coronavirus Research Database |
subjects | Analysis Artificial Intelligence Big Data Case reports Clustering Clusters Control intervention Coronaviruses COVID-19 COVID-19 - epidemiology Disease hot spots Disease transmission Epidemics Epidemiology Evaluation Gauteng department of health Health informatics Hot-spot Humans Localization Pandemics Probabilistic models Public health Risk adjusted strategy Severe acute respiratory syndrome coronavirus 2 South Africa South Africa - epidemiology Statistical analysis Stochastic models Stochastic processes Viral diseases Viruses |
title | Big data- and artificial intelligence-based hot-spot analysis of COVID-19: Gauteng, South Africa, as a case study |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T23%3A21%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Big%20data-%20and%20artificial%20intelligence-based%20hot-spot%20analysis%20of%20COVID-19:%20Gauteng,%20South%20Africa,%20as%20a%20case%20study&rft.jtitle=BMC%20medical%20informatics%20and%20decision%20making&rft.au=Lieberman,%20Benjamin&rft.date=2023-01-26&rft.volume=23&rft.issue=1&rft.spage=19&rft.epage=19&rft.pages=19-19&rft.artnum=19&rft.issn=1472-6947&rft.eissn=1472-6947&rft_id=info:doi/10.1186/s12911-023-02098-3&rft_dat=%3Cgale_doaj_%3EA734840548%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c563t-fa7ff8d5801937e2ebf60ca1fab6084b1259fb03ef50e7fd8253574ab8a0bf293%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2777763333&rft_id=info:pmid/36703133&rft_galeid=A734840548&rfr_iscdi=true |