Loading…
Optimization of Operating Conditions for Electrochemical Decolorization of Methylene Blue with Ti/α-PbO2/β-PbO2 Composite Electrode
α-PbO2 was introduced into the intermediate layer of an electrode to prevent the separation of the electrodeposited layer and maintain oxidizing power. The resulting Ti/α-PbO2/β-PbO2 composite electrode was applied to the electrochemical decolorization of methylene blue (MB) and the operating condit...
Saved in:
Published in: | Journal of composites science 2021-05, Vol.5 (5), p.117 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | α-PbO2 was introduced into the intermediate layer of an electrode to prevent the separation of the electrodeposited layer and maintain oxidizing power. The resulting Ti/α-PbO2/β-PbO2 composite electrode was applied to the electrochemical decolorization of methylene blue (MB) and the operating conditions for MB decolorization with the Ti/α-PbO2/β-PbO2 electrode were optimized. The morphology, structure, composition, and electrochemical performance of Ti/α-PbO2 and Ti/α-PbO2/β-PbO2 anode were evaluated using scanning electron microscopy (SEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS). The optimum operating parameters for the electrochemical decolorization of MB at Ti/α-PbO2/β-PbO2 composites were as follows: Na2SO4 electrolyte 0.05 g L−1, initial concentration of MB 9 mg L−1, cell voltage 20 V, current density 0.05–0.10 A cm−2, and pH 6.0. MB dye could be completely decolorized with Ti/α-PbO2/β-PbO2 for the treatment time of less than one hour, and the dye decolorization efficiency with Ti/α-PbO2/β-PbO2 was about 5 times better, compared with those obtained with Ti/α-PbO2. |
---|---|
ISSN: | 2504-477X 2504-477X |
DOI: | 10.3390/jcs5050117 |