Loading…

Crotoxin Modulates Macrophage Phenotypic Reprogramming

Macrophage plasticity is a fundamental feature of the immune response since it favors the rapid and adequate change of the functional phenotype in response to the pathogen or the microenvironment. Several studies have shown that Crotoxin (CTX), the major toxin of the Crotalus durissus terrificus sna...

Full description

Saved in:
Bibliographic Details
Published in:Toxins 2023-10, Vol.15 (10), p.616
Main Authors: Neves, Camila Lima, Barbosa, Christiano Marcello Vaz, Ranéia-Silva, Priscila Andrade, Faquim-Mauro, Eliana L, Sampaio, Sandra Coccuzzo
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Macrophage plasticity is a fundamental feature of the immune response since it favors the rapid and adequate change of the functional phenotype in response to the pathogen or the microenvironment. Several studies have shown that Crotoxin (CTX), the major toxin of the Crotalus durissus terrificus snake venom, has a long-lasting antitumor effect both in experimental models and in clinical trials. In this study, we show the CTX effect on the phenotypic reprogramming of macrophages in the mesenchymal tumor microenvironment or those obtained from the peritoneal cavity of healthy animals. CTX (0.9 or 5 μg/animal subcutaneously) administered concomitantly with intraperitoneal inoculation of tumor cells (1 × 107/0.5 mL, injected intraperitoneally) of Ehrlich Ascitic Tumor (EAT) modulated the macrophages phenotype (M1), accompanied by increased NO• production by cells from ascites, and was evaluated after 13 days. On the other hand, in healthy animals, the phenotypic profile of macrophages was modulated in a dose-dependent way at 0.9 μg/animal: M1 and at 5.0 μg/animal: M2; this was accompanied by increased NO• production by peritoneal macrophages only for the dose of 0.9 μg/animal of CTX. This study shows that a single administration of CTX interferes with the phenotypic reprogramming of macrophages, as well as with the secretory state of cells from ascites, influencing events involved with mesenchymal tumor progression. These findings may favor the selection of new therapeutic targets to correct compromised immunity in different systems.
ISSN:2072-6651
2072-6651
DOI:10.3390/toxins15100616