Loading…
Evaluation of Oxygen Absorbers Using Food Simulants and Inductively Coupled Mass Spectrometry
In this study, we developed and validated an analytical method to evaluate the heavy metal elution from an active packaging material’s oxygen absorber to a food simulant. Using water, 4% acetic acid, n-heptane, 20% ethanol, and 50% ethanol as food simulants, we quantified cobalt, copper, platinum, a...
Saved in:
Published in: | Foods 2023-10, Vol.12 (19), p.3686 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this study, we developed and validated an analytical method to evaluate the heavy metal elution from an active packaging material’s oxygen absorber to a food simulant. Using water, 4% acetic acid, n-heptane, 20% ethanol, and 50% ethanol as food simulants, we quantified cobalt, copper, platinum, and iron with inductively coupled plasma-mass spectrometry. The method was thoroughly validated for linearity, accuracy, precision, LOD, and LOQ through inter-day and intra-day analysis repetitions. R2 values ranged from 0.9986 to 1.0000, indicating excellent linearity. The LOD values ranged from 0.00002 to 0.2190 mg/kg, and the LOQ values ranged from 0.00007 to 0.6636 mg/kg. The method’s accuracy was 95.14% to 101.98%, with the precision ranging from 0.58% to 10.37%. Our results confirmed the method’s compliance with CODEX standards. Monitoring the oxygen absorber revealed undissolved platinum, cobalt levels from 0.10 to 19.29 μg/kg, copper levels from 0.30 to 976.14 μg/kg, and iron levels from 0.06 to 53.08 mg/kg. This study established a robust analytical approach for evaluating the heavy metal elution from oxygen absorbers, ensuring safety in the food industry. |
---|---|
ISSN: | 2304-8158 2304-8158 |
DOI: | 10.3390/foods12193686 |