Loading…

CPAP3 proteins in the mineralized cuticle of a decapod crustacean

The pancrustacean theory groups crustaceans and hexapods (once thought to comprise separate clades within the Arthropoda) into a single clade. A key feature common to all pancrustaceans is their chitinous exoskeleton, with a major contribution by cuticular proteins. Among these, are the CPAP3’s, a f...

Full description

Saved in:
Bibliographic Details
Published in:Scientific reports 2018-02, Vol.8 (1), p.2430-12, Article 2430
Main Authors: Abehsera, Shai, Zaccai, Shir, Mittelman, Binyamin, Glazer, Lilah, Weil, Simy, Khalaila, Isam, Davidov, Geula, Bitton, Ronit, Zarivach, Raz, Li, Shihao, Li, Fuhua, Xiang, Jianhai, Manor, Rivka, Aflalo, Eliahu D., Sagi, Amir
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c540t-60d2664c1b70a64548a984fc2cde4638bd9e25d9a693326276cad19c4c92c7873
cites cdi_FETCH-LOGICAL-c540t-60d2664c1b70a64548a984fc2cde4638bd9e25d9a693326276cad19c4c92c7873
container_end_page 12
container_issue 1
container_start_page 2430
container_title Scientific reports
container_volume 8
creator Abehsera, Shai
Zaccai, Shir
Mittelman, Binyamin
Glazer, Lilah
Weil, Simy
Khalaila, Isam
Davidov, Geula
Bitton, Ronit
Zarivach, Raz
Li, Shihao
Li, Fuhua
Xiang, Jianhai
Manor, Rivka
Aflalo, Eliahu D.
Sagi, Amir
description The pancrustacean theory groups crustaceans and hexapods (once thought to comprise separate clades within the Arthropoda) into a single clade. A key feature common to all pancrustaceans is their chitinous exoskeleton, with a major contribution by cuticular proteins. Among these, are the CPAP3’s, a family of cuticular proteins, first identified in the hexapod Drosophila melanogaster and characterized by an N-terminal signaling peptide and three chitin-binding domains. In this study, CPAP3 proteins were mined from a transcriptomic library of a decapod crustacean, the crayfish Cherax quadricarinatus . Phylogenetic analysis of other CPAP3 proteins from hexapods and other crustaceans showed a high degree of conservation. Characterization of the crayfish proteins, designated CqCPAP3’s, suggested a major role for CPAP3’sin cuticle formation. Loss-of-function experiments using RNAi supported such a notion by demonstrating crucial roles for several CqCPAP3 proteins during molting. A putative mode of action for the CqCPAP3 proteins –theoretically binding three chitin strands– was suggested by the structural data obtained from a representative recombinant CqCPAP3. The similarities between the CqCPAP3 proteins and their hexapod homologues further demonstrated common genetic and proteinaceous features of cuticle formation in pancrustaceans, thereby reinforcing the linkage between these two highly important phylogenetic groups.
doi_str_mv 10.1038/s41598-018-20835-x
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_9612dea2f0a5408eb45e0c09a2103e57</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_9612dea2f0a5408eb45e0c09a2103e57</doaj_id><sourcerecordid>1995156166</sourcerecordid><originalsourceid>FETCH-LOGICAL-c540t-60d2664c1b70a64548a984fc2cde4638bd9e25d9a693326276cad19c4c92c7873</originalsourceid><addsrcrecordid>eNp1kU1rGzEQhkVpaEKaP5BDWeill231vdKlYEw_AoHmkJyFLM06MmvJlXZL0l9f2ZsGp1BdRmjeeTQzL0KXBH8kmKlPhROhVYuJailWTLQPr9AZxVy0lFH6-uh-ii5K2eB6BNWc6DfotEbMsFRnaLG8WdywZpfTCCGWJsRmvIdmGyJkO4Tf4Bs3jcEN0KS-sY0HZ3epPuapjNaBjW_RSW-HAhdP8Rzdff1yu_zeXv_4drVcXLdOcDy2EnsqJXdk1WErueDKasV7R50HLplaeQ1UeG2lZoxK2klnPdGOO01dpzp2jq5mrk92Y3Y5bG1-NMkGc3hIeW1sPnRqtCTUg6U9tvVvBSsuADusLa2rA7FnfZ5Zu2m1Be8gjnXaF9CXmRjuzTr9MqLTmklRAR-eADn9nKCMZhuKg2GwEdJUDNFaECGJlFX6_h_pJk051lXtVZxpieleRWeVy6mUDP1zMwSbveFmNtxUw83BcPNQi94dj_Fc8tfeKmCzoNRUXEM--vv_2D8PwLS8</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1994396026</pqid></control><display><type>article</type><title>CPAP3 proteins in the mineralized cuticle of a decapod crustacean</title><source>ProQuest - Publicly Available Content Database</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Abehsera, Shai ; Zaccai, Shir ; Mittelman, Binyamin ; Glazer, Lilah ; Weil, Simy ; Khalaila, Isam ; Davidov, Geula ; Bitton, Ronit ; Zarivach, Raz ; Li, Shihao ; Li, Fuhua ; Xiang, Jianhai ; Manor, Rivka ; Aflalo, Eliahu D. ; Sagi, Amir</creator><creatorcontrib>Abehsera, Shai ; Zaccai, Shir ; Mittelman, Binyamin ; Glazer, Lilah ; Weil, Simy ; Khalaila, Isam ; Davidov, Geula ; Bitton, Ronit ; Zarivach, Raz ; Li, Shihao ; Li, Fuhua ; Xiang, Jianhai ; Manor, Rivka ; Aflalo, Eliahu D. ; Sagi, Amir</creatorcontrib><description>The pancrustacean theory groups crustaceans and hexapods (once thought to comprise separate clades within the Arthropoda) into a single clade. A key feature common to all pancrustaceans is their chitinous exoskeleton, with a major contribution by cuticular proteins. Among these, are the CPAP3’s, a family of cuticular proteins, first identified in the hexapod Drosophila melanogaster and characterized by an N-terminal signaling peptide and three chitin-binding domains. In this study, CPAP3 proteins were mined from a transcriptomic library of a decapod crustacean, the crayfish Cherax quadricarinatus . Phylogenetic analysis of other CPAP3 proteins from hexapods and other crustaceans showed a high degree of conservation. Characterization of the crayfish proteins, designated CqCPAP3’s, suggested a major role for CPAP3’sin cuticle formation. Loss-of-function experiments using RNAi supported such a notion by demonstrating crucial roles for several CqCPAP3 proteins during molting. A putative mode of action for the CqCPAP3 proteins –theoretically binding three chitin strands– was suggested by the structural data obtained from a representative recombinant CqCPAP3. The similarities between the CqCPAP3 proteins and their hexapod homologues further demonstrated common genetic and proteinaceous features of cuticle formation in pancrustaceans, thereby reinforcing the linkage between these two highly important phylogenetic groups.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-018-20835-x</identifier><identifier>PMID: 29403068</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>101/28 ; 38 ; 38/23 ; 38/77 ; 38/89 ; 631/181/735 ; 631/337/475 ; 82 ; 82/58 ; 82/80 ; Animal Shells - chemistry ; Animal Shells - metabolism ; Animals ; Arthropod Proteins - antagonists &amp; inhibitors ; Arthropod Proteins - chemistry ; Arthropod Proteins - genetics ; Arthropod Proteins - metabolism ; Astacoidea - classification ; Astacoidea - genetics ; Astacoidea - metabolism ; Biomineralization - genetics ; Chitin ; Chitin - biosynthesis ; Chitin - chemistry ; Chitin - genetics ; Cloning, Molecular ; Crustacea ; Crustaceans ; Escherichia coli - genetics ; Escherichia coli - metabolism ; Exoskeleton ; Gene Expression ; Genetic Vectors - chemistry ; Genetic Vectors - metabolism ; Hexapoda ; Humanities and Social Sciences ; Insecta - classification ; Insecta - genetics ; Insecta - metabolism ; Mode of action ; Molting ; multidisciplinary ; Phylogenetics ; Phylogeny ; Protein Isoforms - antagonists &amp; inhibitors ; Protein Isoforms - chemistry ; Protein Isoforms - genetics ; Protein Isoforms - metabolism ; Proteins ; Recombinant Proteins - chemistry ; Recombinant Proteins - genetics ; Recombinant Proteins - metabolism ; RNA, Small Interfering - genetics ; RNA, Small Interfering - metabolism ; RNA-mediated interference ; Science ; Science (multidisciplinary) ; Transcriptome</subject><ispartof>Scientific reports, 2018-02, Vol.8 (1), p.2430-12, Article 2430</ispartof><rights>The Author(s) 2018</rights><rights>2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c540t-60d2664c1b70a64548a984fc2cde4638bd9e25d9a693326276cad19c4c92c7873</citedby><cites>FETCH-LOGICAL-c540t-60d2664c1b70a64548a984fc2cde4638bd9e25d9a693326276cad19c4c92c7873</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1994396026/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1994396026?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29403068$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Abehsera, Shai</creatorcontrib><creatorcontrib>Zaccai, Shir</creatorcontrib><creatorcontrib>Mittelman, Binyamin</creatorcontrib><creatorcontrib>Glazer, Lilah</creatorcontrib><creatorcontrib>Weil, Simy</creatorcontrib><creatorcontrib>Khalaila, Isam</creatorcontrib><creatorcontrib>Davidov, Geula</creatorcontrib><creatorcontrib>Bitton, Ronit</creatorcontrib><creatorcontrib>Zarivach, Raz</creatorcontrib><creatorcontrib>Li, Shihao</creatorcontrib><creatorcontrib>Li, Fuhua</creatorcontrib><creatorcontrib>Xiang, Jianhai</creatorcontrib><creatorcontrib>Manor, Rivka</creatorcontrib><creatorcontrib>Aflalo, Eliahu D.</creatorcontrib><creatorcontrib>Sagi, Amir</creatorcontrib><title>CPAP3 proteins in the mineralized cuticle of a decapod crustacean</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>The pancrustacean theory groups crustaceans and hexapods (once thought to comprise separate clades within the Arthropoda) into a single clade. A key feature common to all pancrustaceans is their chitinous exoskeleton, with a major contribution by cuticular proteins. Among these, are the CPAP3’s, a family of cuticular proteins, first identified in the hexapod Drosophila melanogaster and characterized by an N-terminal signaling peptide and three chitin-binding domains. In this study, CPAP3 proteins were mined from a transcriptomic library of a decapod crustacean, the crayfish Cherax quadricarinatus . Phylogenetic analysis of other CPAP3 proteins from hexapods and other crustaceans showed a high degree of conservation. Characterization of the crayfish proteins, designated CqCPAP3’s, suggested a major role for CPAP3’sin cuticle formation. Loss-of-function experiments using RNAi supported such a notion by demonstrating crucial roles for several CqCPAP3 proteins during molting. A putative mode of action for the CqCPAP3 proteins –theoretically binding three chitin strands– was suggested by the structural data obtained from a representative recombinant CqCPAP3. The similarities between the CqCPAP3 proteins and their hexapod homologues further demonstrated common genetic and proteinaceous features of cuticle formation in pancrustaceans, thereby reinforcing the linkage between these two highly important phylogenetic groups.</description><subject>101/28</subject><subject>38</subject><subject>38/23</subject><subject>38/77</subject><subject>38/89</subject><subject>631/181/735</subject><subject>631/337/475</subject><subject>82</subject><subject>82/58</subject><subject>82/80</subject><subject>Animal Shells - chemistry</subject><subject>Animal Shells - metabolism</subject><subject>Animals</subject><subject>Arthropod Proteins - antagonists &amp; inhibitors</subject><subject>Arthropod Proteins - chemistry</subject><subject>Arthropod Proteins - genetics</subject><subject>Arthropod Proteins - metabolism</subject><subject>Astacoidea - classification</subject><subject>Astacoidea - genetics</subject><subject>Astacoidea - metabolism</subject><subject>Biomineralization - genetics</subject><subject>Chitin</subject><subject>Chitin - biosynthesis</subject><subject>Chitin - chemistry</subject><subject>Chitin - genetics</subject><subject>Cloning, Molecular</subject><subject>Crustacea</subject><subject>Crustaceans</subject><subject>Escherichia coli - genetics</subject><subject>Escherichia coli - metabolism</subject><subject>Exoskeleton</subject><subject>Gene Expression</subject><subject>Genetic Vectors - chemistry</subject><subject>Genetic Vectors - metabolism</subject><subject>Hexapoda</subject><subject>Humanities and Social Sciences</subject><subject>Insecta - classification</subject><subject>Insecta - genetics</subject><subject>Insecta - metabolism</subject><subject>Mode of action</subject><subject>Molting</subject><subject>multidisciplinary</subject><subject>Phylogenetics</subject><subject>Phylogeny</subject><subject>Protein Isoforms - antagonists &amp; inhibitors</subject><subject>Protein Isoforms - chemistry</subject><subject>Protein Isoforms - genetics</subject><subject>Protein Isoforms - metabolism</subject><subject>Proteins</subject><subject>Recombinant Proteins - chemistry</subject><subject>Recombinant Proteins - genetics</subject><subject>Recombinant Proteins - metabolism</subject><subject>RNA, Small Interfering - genetics</subject><subject>RNA, Small Interfering - metabolism</subject><subject>RNA-mediated interference</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Transcriptome</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp1kU1rGzEQhkVpaEKaP5BDWeill231vdKlYEw_AoHmkJyFLM06MmvJlXZL0l9f2ZsGp1BdRmjeeTQzL0KXBH8kmKlPhROhVYuJailWTLQPr9AZxVy0lFH6-uh-ii5K2eB6BNWc6DfotEbMsFRnaLG8WdywZpfTCCGWJsRmvIdmGyJkO4Tf4Bs3jcEN0KS-sY0HZ3epPuapjNaBjW_RSW-HAhdP8Rzdff1yu_zeXv_4drVcXLdOcDy2EnsqJXdk1WErueDKasV7R50HLplaeQ1UeG2lZoxK2klnPdGOO01dpzp2jq5mrk92Y3Y5bG1-NMkGc3hIeW1sPnRqtCTUg6U9tvVvBSsuADusLa2rA7FnfZ5Zu2m1Be8gjnXaF9CXmRjuzTr9MqLTmklRAR-eADn9nKCMZhuKg2GwEdJUDNFaECGJlFX6_h_pJk051lXtVZxpieleRWeVy6mUDP1zMwSbveFmNtxUw83BcPNQi94dj_Fc8tfeKmCzoNRUXEM--vv_2D8PwLS8</recordid><startdate>20180205</startdate><enddate>20180205</enddate><creator>Abehsera, Shai</creator><creator>Zaccai, Shir</creator><creator>Mittelman, Binyamin</creator><creator>Glazer, Lilah</creator><creator>Weil, Simy</creator><creator>Khalaila, Isam</creator><creator>Davidov, Geula</creator><creator>Bitton, Ronit</creator><creator>Zarivach, Raz</creator><creator>Li, Shihao</creator><creator>Li, Fuhua</creator><creator>Xiang, Jianhai</creator><creator>Manor, Rivka</creator><creator>Aflalo, Eliahu D.</creator><creator>Sagi, Amir</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20180205</creationdate><title>CPAP3 proteins in the mineralized cuticle of a decapod crustacean</title><author>Abehsera, Shai ; Zaccai, Shir ; Mittelman, Binyamin ; Glazer, Lilah ; Weil, Simy ; Khalaila, Isam ; Davidov, Geula ; Bitton, Ronit ; Zarivach, Raz ; Li, Shihao ; Li, Fuhua ; Xiang, Jianhai ; Manor, Rivka ; Aflalo, Eliahu D. ; Sagi, Amir</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c540t-60d2664c1b70a64548a984fc2cde4638bd9e25d9a693326276cad19c4c92c7873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>101/28</topic><topic>38</topic><topic>38/23</topic><topic>38/77</topic><topic>38/89</topic><topic>631/181/735</topic><topic>631/337/475</topic><topic>82</topic><topic>82/58</topic><topic>82/80</topic><topic>Animal Shells - chemistry</topic><topic>Animal Shells - metabolism</topic><topic>Animals</topic><topic>Arthropod Proteins - antagonists &amp; inhibitors</topic><topic>Arthropod Proteins - chemistry</topic><topic>Arthropod Proteins - genetics</topic><topic>Arthropod Proteins - metabolism</topic><topic>Astacoidea - classification</topic><topic>Astacoidea - genetics</topic><topic>Astacoidea - metabolism</topic><topic>Biomineralization - genetics</topic><topic>Chitin</topic><topic>Chitin - biosynthesis</topic><topic>Chitin - chemistry</topic><topic>Chitin - genetics</topic><topic>Cloning, Molecular</topic><topic>Crustacea</topic><topic>Crustaceans</topic><topic>Escherichia coli - genetics</topic><topic>Escherichia coli - metabolism</topic><topic>Exoskeleton</topic><topic>Gene Expression</topic><topic>Genetic Vectors - chemistry</topic><topic>Genetic Vectors - metabolism</topic><topic>Hexapoda</topic><topic>Humanities and Social Sciences</topic><topic>Insecta - classification</topic><topic>Insecta - genetics</topic><topic>Insecta - metabolism</topic><topic>Mode of action</topic><topic>Molting</topic><topic>multidisciplinary</topic><topic>Phylogenetics</topic><topic>Phylogeny</topic><topic>Protein Isoforms - antagonists &amp; inhibitors</topic><topic>Protein Isoforms - chemistry</topic><topic>Protein Isoforms - genetics</topic><topic>Protein Isoforms - metabolism</topic><topic>Proteins</topic><topic>Recombinant Proteins - chemistry</topic><topic>Recombinant Proteins - genetics</topic><topic>Recombinant Proteins - metabolism</topic><topic>RNA, Small Interfering - genetics</topic><topic>RNA, Small Interfering - metabolism</topic><topic>RNA-mediated interference</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Transcriptome</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Abehsera, Shai</creatorcontrib><creatorcontrib>Zaccai, Shir</creatorcontrib><creatorcontrib>Mittelman, Binyamin</creatorcontrib><creatorcontrib>Glazer, Lilah</creatorcontrib><creatorcontrib>Weil, Simy</creatorcontrib><creatorcontrib>Khalaila, Isam</creatorcontrib><creatorcontrib>Davidov, Geula</creatorcontrib><creatorcontrib>Bitton, Ronit</creatorcontrib><creatorcontrib>Zarivach, Raz</creatorcontrib><creatorcontrib>Li, Shihao</creatorcontrib><creatorcontrib>Li, Fuhua</creatorcontrib><creatorcontrib>Xiang, Jianhai</creatorcontrib><creatorcontrib>Manor, Rivka</creatorcontrib><creatorcontrib>Aflalo, Eliahu D.</creatorcontrib><creatorcontrib>Sagi, Amir</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Science Journals</collection><collection>ProQuest Biological Science Journals</collection><collection>ProQuest - Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Abehsera, Shai</au><au>Zaccai, Shir</au><au>Mittelman, Binyamin</au><au>Glazer, Lilah</au><au>Weil, Simy</au><au>Khalaila, Isam</au><au>Davidov, Geula</au><au>Bitton, Ronit</au><au>Zarivach, Raz</au><au>Li, Shihao</au><au>Li, Fuhua</au><au>Xiang, Jianhai</au><au>Manor, Rivka</au><au>Aflalo, Eliahu D.</au><au>Sagi, Amir</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>CPAP3 proteins in the mineralized cuticle of a decapod crustacean</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2018-02-05</date><risdate>2018</risdate><volume>8</volume><issue>1</issue><spage>2430</spage><epage>12</epage><pages>2430-12</pages><artnum>2430</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>The pancrustacean theory groups crustaceans and hexapods (once thought to comprise separate clades within the Arthropoda) into a single clade. A key feature common to all pancrustaceans is their chitinous exoskeleton, with a major contribution by cuticular proteins. Among these, are the CPAP3’s, a family of cuticular proteins, first identified in the hexapod Drosophila melanogaster and characterized by an N-terminal signaling peptide and three chitin-binding domains. In this study, CPAP3 proteins were mined from a transcriptomic library of a decapod crustacean, the crayfish Cherax quadricarinatus . Phylogenetic analysis of other CPAP3 proteins from hexapods and other crustaceans showed a high degree of conservation. Characterization of the crayfish proteins, designated CqCPAP3’s, suggested a major role for CPAP3’sin cuticle formation. Loss-of-function experiments using RNAi supported such a notion by demonstrating crucial roles for several CqCPAP3 proteins during molting. A putative mode of action for the CqCPAP3 proteins –theoretically binding three chitin strands– was suggested by the structural data obtained from a representative recombinant CqCPAP3. The similarities between the CqCPAP3 proteins and their hexapod homologues further demonstrated common genetic and proteinaceous features of cuticle formation in pancrustaceans, thereby reinforcing the linkage between these two highly important phylogenetic groups.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>29403068</pmid><doi>10.1038/s41598-018-20835-x</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2018-02, Vol.8 (1), p.2430-12, Article 2430
issn 2045-2322
2045-2322
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_9612dea2f0a5408eb45e0c09a2103e57
source ProQuest - Publicly Available Content Database; PubMed Central; Free Full-Text Journals in Chemistry; Springer Nature - nature.com Journals - Fully Open Access
subjects 101/28
38
38/23
38/77
38/89
631/181/735
631/337/475
82
82/58
82/80
Animal Shells - chemistry
Animal Shells - metabolism
Animals
Arthropod Proteins - antagonists & inhibitors
Arthropod Proteins - chemistry
Arthropod Proteins - genetics
Arthropod Proteins - metabolism
Astacoidea - classification
Astacoidea - genetics
Astacoidea - metabolism
Biomineralization - genetics
Chitin
Chitin - biosynthesis
Chitin - chemistry
Chitin - genetics
Cloning, Molecular
Crustacea
Crustaceans
Escherichia coli - genetics
Escherichia coli - metabolism
Exoskeleton
Gene Expression
Genetic Vectors - chemistry
Genetic Vectors - metabolism
Hexapoda
Humanities and Social Sciences
Insecta - classification
Insecta - genetics
Insecta - metabolism
Mode of action
Molting
multidisciplinary
Phylogenetics
Phylogeny
Protein Isoforms - antagonists & inhibitors
Protein Isoforms - chemistry
Protein Isoforms - genetics
Protein Isoforms - metabolism
Proteins
Recombinant Proteins - chemistry
Recombinant Proteins - genetics
Recombinant Proteins - metabolism
RNA, Small Interfering - genetics
RNA, Small Interfering - metabolism
RNA-mediated interference
Science
Science (multidisciplinary)
Transcriptome
title CPAP3 proteins in the mineralized cuticle of a decapod crustacean
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T06%3A00%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=CPAP3%20proteins%20in%20the%20mineralized%20cuticle%20of%20a%20decapod%20crustacean&rft.jtitle=Scientific%20reports&rft.au=Abehsera,%20Shai&rft.date=2018-02-05&rft.volume=8&rft.issue=1&rft.spage=2430&rft.epage=12&rft.pages=2430-12&rft.artnum=2430&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-018-20835-x&rft_dat=%3Cproquest_doaj_%3E1995156166%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c540t-60d2664c1b70a64548a984fc2cde4638bd9e25d9a693326276cad19c4c92c7873%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1994396026&rft_id=info:pmid/29403068&rfr_iscdi=true