Loading…

Hecke relations, cosets and the classification of 2d RCFTs

A bstract We systemically study the Hecke relations and the c = 8 k coset relations among 2d rational conformal field theories (RCFTs) with up to seven characters. We propose that the characters of any 2d RCFT — unitary or non-unitary — satisfying a holomorphic modular linear differential equation (...

Full description

Saved in:
Bibliographic Details
Published in:The journal of high energy physics 2022-09, Vol.2022 (9), p.202-71, Article 202
Main Authors: Duan, Zhihao, Lee, Kimyeong, Sun, Kaiwen
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c417t-987beeb971c0172ebc5bc2da48a13d5050f9e461fc58840113081ec036661cae3
cites cdi_FETCH-LOGICAL-c417t-987beeb971c0172ebc5bc2da48a13d5050f9e461fc58840113081ec036661cae3
container_end_page 71
container_issue 9
container_start_page 202
container_title The journal of high energy physics
container_volume 2022
creator Duan, Zhihao
Lee, Kimyeong
Sun, Kaiwen
description A bstract We systemically study the Hecke relations and the c = 8 k coset relations among 2d rational conformal field theories (RCFTs) with up to seven characters. We propose that the characters of any 2d RCFT — unitary or non-unitary — satisfying a holomorphic modular linear differential equation (MLDE) can be realized as either a Hecke image or the coset of a Hecke image with respect to a c = 8 k theory. Benefited from the recent results on holomorphic modular bootstrap, we check this proposal for all admissible theories with up to five characters. We also find many new interesting Hecke relations. For example, the characters of WZW models ( E 6 ) 2 , ( E 7 ) 2 , ( E 7 1 2 ) 2 can be realized as the Hecke images T 13 , T 19 , T 19 of Virasoro minimal models M sub (7 , 6), M (5 , 4) , M eff (13 , 2) respectively. Besides, we find the characters associated to the second largest Fisher group Fi 23 and the Harada-Norton group HN can be realized as the Hecke images T 23 , T 19 of the product theories M eff (5 , 2) ⊗ M eff (7 , 2) and M eff (7 , 2) ⊗2 respectively. Mathematically, our study provides a great many interesting examples of vector-valued modular functions up to rank seven.
doi_str_mv 10.1007/JHEP09(2022)202
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_961d86bae0434f5e87d4e24da7be4531</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_961d86bae0434f5e87d4e24da7be4531</doaj_id><sourcerecordid>2757875614</sourcerecordid><originalsourceid>FETCH-LOGICAL-c417t-987beeb971c0172ebc5bc2da48a13d5050f9e461fc58840113081ec036661cae3</originalsourceid><addsrcrecordid>eNp1UMFOwzAMrRBIjMGZayUuIDFmp0mTckPTxoYmgdA4R2nqjo6yjKQ78Pd0KwIuXGzLfu_56UXROcINAsjhw3T8BNklA8au2nIQ9RBYNlBcZod_5uPoJIQVAArMoBfdTsm-UeypNk3l1uE6ti5QE2KzLuLmlWJbmxCqsrL7e-zKmBXx82iyCKfRUWnqQGffvR-9TMaL0XQwf7yfje7mA8tRNoNMyZwozyRaQMkotyK3rDBcGUwKAQLKjHiKpRVKcUBMQCFZSNI0RWso6UezTrdwZqU3vno3_lM7U-n9wvmlNr6pbE06S7FQaW4IeMJLQUoWnBgvTGuBiwRbrYtOa-Pdx5ZCo1du69etfc2kkEqKFHmLGnYo610Insqfrwh6F7buwta7sHelZUDHCC1yvST_q_sf5Qt6W34v</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2757875614</pqid></control><display><type>article</type><title>Hecke relations, cosets and the classification of 2d RCFTs</title><source>Springer Nature - SpringerLink Journals - Fully Open Access</source><source>Publicly Available Content (ProQuest)</source><creator>Duan, Zhihao ; Lee, Kimyeong ; Sun, Kaiwen</creator><creatorcontrib>Duan, Zhihao ; Lee, Kimyeong ; Sun, Kaiwen</creatorcontrib><description>A bstract We systemically study the Hecke relations and the c = 8 k coset relations among 2d rational conformal field theories (RCFTs) with up to seven characters. We propose that the characters of any 2d RCFT — unitary or non-unitary — satisfying a holomorphic modular linear differential equation (MLDE) can be realized as either a Hecke image or the coset of a Hecke image with respect to a c = 8 k theory. Benefited from the recent results on holomorphic modular bootstrap, we check this proposal for all admissible theories with up to five characters. We also find many new interesting Hecke relations. For example, the characters of WZW models ( E 6 ) 2 , ( E 7 ) 2 , ( E 7 1 2 ) 2 can be realized as the Hecke images T 13 , T 19 , T 19 of Virasoro minimal models M sub (7 , 6), M (5 , 4) , M eff (13 , 2) respectively. Besides, we find the characters associated to the second largest Fisher group Fi 23 and the Harada-Norton group HN can be realized as the Hecke images T 23 , T 19 of the product theories M eff (5 , 2) ⊗ M eff (7 , 2) and M eff (7 , 2) ⊗2 respectively. Mathematically, our study provides a great many interesting examples of vector-valued modular functions up to rank seven.</description><identifier>ISSN: 1029-8479</identifier><identifier>EISSN: 1029-8479</identifier><identifier>DOI: 10.1007/JHEP09(2022)202</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Classical and Quantum Gravitation ; Classification ; Conformal and W Symmetry ; Conformal Field Models in String Theory ; Differential equations ; Elementary Particles ; High energy physics ; Mathematical analysis ; Phase transitions ; Physics ; Physics and Astronomy ; Quantum Field Theories ; Quantum Field Theory ; Quantum Physics ; Regular Article - Theoretical Physics ; Relativity Theory ; String Theory</subject><ispartof>The journal of high energy physics, 2022-09, Vol.2022 (9), p.202-71, Article 202</ispartof><rights>The Author(s) 2022</rights><rights>The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c417t-987beeb971c0172ebc5bc2da48a13d5050f9e461fc58840113081ec036661cae3</citedby><cites>FETCH-LOGICAL-c417t-987beeb971c0172ebc5bc2da48a13d5050f9e461fc58840113081ec036661cae3</cites><orcidid>0000-0003-0716-1651</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2757875614/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2757875614?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Duan, Zhihao</creatorcontrib><creatorcontrib>Lee, Kimyeong</creatorcontrib><creatorcontrib>Sun, Kaiwen</creatorcontrib><title>Hecke relations, cosets and the classification of 2d RCFTs</title><title>The journal of high energy physics</title><addtitle>J. High Energ. Phys</addtitle><description>A bstract We systemically study the Hecke relations and the c = 8 k coset relations among 2d rational conformal field theories (RCFTs) with up to seven characters. We propose that the characters of any 2d RCFT — unitary or non-unitary — satisfying a holomorphic modular linear differential equation (MLDE) can be realized as either a Hecke image or the coset of a Hecke image with respect to a c = 8 k theory. Benefited from the recent results on holomorphic modular bootstrap, we check this proposal for all admissible theories with up to five characters. We also find many new interesting Hecke relations. For example, the characters of WZW models ( E 6 ) 2 , ( E 7 ) 2 , ( E 7 1 2 ) 2 can be realized as the Hecke images T 13 , T 19 , T 19 of Virasoro minimal models M sub (7 , 6), M (5 , 4) , M eff (13 , 2) respectively. Besides, we find the characters associated to the second largest Fisher group Fi 23 and the Harada-Norton group HN can be realized as the Hecke images T 23 , T 19 of the product theories M eff (5 , 2) ⊗ M eff (7 , 2) and M eff (7 , 2) ⊗2 respectively. Mathematically, our study provides a great many interesting examples of vector-valued modular functions up to rank seven.</description><subject>Classical and Quantum Gravitation</subject><subject>Classification</subject><subject>Conformal and W Symmetry</subject><subject>Conformal Field Models in String Theory</subject><subject>Differential equations</subject><subject>Elementary Particles</subject><subject>High energy physics</subject><subject>Mathematical analysis</subject><subject>Phase transitions</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Field Theories</subject><subject>Quantum Field Theory</subject><subject>Quantum Physics</subject><subject>Regular Article - Theoretical Physics</subject><subject>Relativity Theory</subject><subject>String Theory</subject><issn>1029-8479</issn><issn>1029-8479</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp1UMFOwzAMrRBIjMGZayUuIDFmp0mTckPTxoYmgdA4R2nqjo6yjKQ78Pd0KwIuXGzLfu_56UXROcINAsjhw3T8BNklA8au2nIQ9RBYNlBcZod_5uPoJIQVAArMoBfdTsm-UeypNk3l1uE6ti5QE2KzLuLmlWJbmxCqsrL7e-zKmBXx82iyCKfRUWnqQGffvR-9TMaL0XQwf7yfje7mA8tRNoNMyZwozyRaQMkotyK3rDBcGUwKAQLKjHiKpRVKcUBMQCFZSNI0RWso6UezTrdwZqU3vno3_lM7U-n9wvmlNr6pbE06S7FQaW4IeMJLQUoWnBgvTGuBiwRbrYtOa-Pdx5ZCo1du69etfc2kkEqKFHmLGnYo610Insqfrwh6F7buwta7sHelZUDHCC1yvST_q_sf5Qt6W34v</recordid><startdate>20220923</startdate><enddate>20220923</enddate><creator>Duan, Zhihao</creator><creator>Lee, Kimyeong</creator><creator>Sun, Kaiwen</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><general>SpringerOpen</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-0716-1651</orcidid></search><sort><creationdate>20220923</creationdate><title>Hecke relations, cosets and the classification of 2d RCFTs</title><author>Duan, Zhihao ; Lee, Kimyeong ; Sun, Kaiwen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c417t-987beeb971c0172ebc5bc2da48a13d5050f9e461fc58840113081ec036661cae3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Classical and Quantum Gravitation</topic><topic>Classification</topic><topic>Conformal and W Symmetry</topic><topic>Conformal Field Models in String Theory</topic><topic>Differential equations</topic><topic>Elementary Particles</topic><topic>High energy physics</topic><topic>Mathematical analysis</topic><topic>Phase transitions</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Field Theories</topic><topic>Quantum Field Theory</topic><topic>Quantum Physics</topic><topic>Regular Article - Theoretical Physics</topic><topic>Relativity Theory</topic><topic>String Theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Duan, Zhihao</creatorcontrib><creatorcontrib>Lee, Kimyeong</creatorcontrib><creatorcontrib>Sun, Kaiwen</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>The journal of high energy physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Duan, Zhihao</au><au>Lee, Kimyeong</au><au>Sun, Kaiwen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hecke relations, cosets and the classification of 2d RCFTs</atitle><jtitle>The journal of high energy physics</jtitle><stitle>J. High Energ. Phys</stitle><date>2022-09-23</date><risdate>2022</risdate><volume>2022</volume><issue>9</issue><spage>202</spage><epage>71</epage><pages>202-71</pages><artnum>202</artnum><issn>1029-8479</issn><eissn>1029-8479</eissn><abstract>A bstract We systemically study the Hecke relations and the c = 8 k coset relations among 2d rational conformal field theories (RCFTs) with up to seven characters. We propose that the characters of any 2d RCFT — unitary or non-unitary — satisfying a holomorphic modular linear differential equation (MLDE) can be realized as either a Hecke image or the coset of a Hecke image with respect to a c = 8 k theory. Benefited from the recent results on holomorphic modular bootstrap, we check this proposal for all admissible theories with up to five characters. We also find many new interesting Hecke relations. For example, the characters of WZW models ( E 6 ) 2 , ( E 7 ) 2 , ( E 7 1 2 ) 2 can be realized as the Hecke images T 13 , T 19 , T 19 of Virasoro minimal models M sub (7 , 6), M (5 , 4) , M eff (13 , 2) respectively. Besides, we find the characters associated to the second largest Fisher group Fi 23 and the Harada-Norton group HN can be realized as the Hecke images T 23 , T 19 of the product theories M eff (5 , 2) ⊗ M eff (7 , 2) and M eff (7 , 2) ⊗2 respectively. Mathematically, our study provides a great many interesting examples of vector-valued modular functions up to rank seven.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/JHEP09(2022)202</doi><tpages>71</tpages><orcidid>https://orcid.org/0000-0003-0716-1651</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1029-8479
ispartof The journal of high energy physics, 2022-09, Vol.2022 (9), p.202-71, Article 202
issn 1029-8479
1029-8479
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_961d86bae0434f5e87d4e24da7be4531
source Springer Nature - SpringerLink Journals - Fully Open Access; Publicly Available Content (ProQuest)
subjects Classical and Quantum Gravitation
Classification
Conformal and W Symmetry
Conformal Field Models in String Theory
Differential equations
Elementary Particles
High energy physics
Mathematical analysis
Phase transitions
Physics
Physics and Astronomy
Quantum Field Theories
Quantum Field Theory
Quantum Physics
Regular Article - Theoretical Physics
Relativity Theory
String Theory
title Hecke relations, cosets and the classification of 2d RCFTs
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T19%3A42%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hecke%20relations,%20cosets%20and%20the%20classification%20of%202d%20RCFTs&rft.jtitle=The%20journal%20of%20high%20energy%20physics&rft.au=Duan,%20Zhihao&rft.date=2022-09-23&rft.volume=2022&rft.issue=9&rft.spage=202&rft.epage=71&rft.pages=202-71&rft.artnum=202&rft.issn=1029-8479&rft.eissn=1029-8479&rft_id=info:doi/10.1007/JHEP09(2022)202&rft_dat=%3Cproquest_doaj_%3E2757875614%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c417t-987beeb971c0172ebc5bc2da48a13d5050f9e461fc58840113081ec036661cae3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2757875614&rft_id=info:pmid/&rfr_iscdi=true