Loading…
Solution of Fractional Differential Boundary Value Problems with Arbitrary Values of Derivative Orders for Time Series Analysis
The paper considers the solution of a fractional differential boundary value problem, that is, a diffusion-type equation with arbitrary values of the derivative orders on an infinite axis. The difference between the obtained results and other authors’ ones is that these involve arbitrary values of t...
Saved in:
Published in: | Mathematics (Basel) 2024-12, Vol.12 (24), p.3905 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c254t-1481af11fda0a75b1c48fee69f4351e0aabd22820a021cb9e14801c8e10e9733 |
container_end_page | |
container_issue | 24 |
container_start_page | 3905 |
container_title | Mathematics (Basel) |
container_volume | 12 |
creator | Zhukov, Dmitry Zhmud, Vadim Otradnov, Konstantin Kalinin, Vladimir |
description | The paper considers the solution of a fractional differential boundary value problem, that is, a diffusion-type equation with arbitrary values of the derivative orders on an infinite axis. The difference between the obtained results and other authors’ ones is that these involve arbitrary values of the derivative orders. The solutions described in the literature, as a rule, are considered in the case when the fractional time derivative β lies in the range: 0 < β ≤ 1, and the fractional state derivative α (the variable describing the state of the process) is in the range: 1 < α ≤ 2. The solution presented in the article allows us to consider any ranges for α and β, if the inequality 0 < β/α ≤ 0.865 is satisfied in the range β/α. In order to solve the boundary value problem, the probability density function of the observed state x of a certain process (for example, the magnitude of the deviation of the levels of a time series) from time t (for example, the time interval for calculating the amplitudes of the deviation of the levels of a time series) can be captured. |
doi_str_mv | 10.3390/math12243905 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_961f3c5d16da44a0b8fe998e772c2ece</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_961f3c5d16da44a0b8fe998e772c2ece</doaj_id><sourcerecordid>3149693795</sourcerecordid><originalsourceid>FETCH-LOGICAL-c254t-1481af11fda0a75b1c48fee69f4351e0aabd22820a021cb9e14801c8e10e9733</originalsourceid><addsrcrecordid>eNpNUU1LAzEQXURBUW_-gIBXq_na7uZYP6qCoGDxGmazE03ZNjpJFU_-dVMrYi55M_PmvRmmqo4EP1XK8LMF5BchpS643qr2pJTNqCnB9j-8Wx2mNOflGaFabfaqr8c4rHKISxY9mxK4NYaBXQbvkXCZQwnO42rZA32yJxhWyB4odgMuEvsI-YVNqAuZ_qppLXSJFN4hh3dk99QjJeYjsVlYIHsspUKaFJPPFNJBteNhSHj4--9Xs-nV7OJmdHd_fXsxuRs5Wes8EroV4IXwPXBo6k443XrEsfFa1QI5QNdL2UoOXArXGSwNXLgWBUfTKLVf3W5k-whz-0phUQa2EYL9SUR6tkA5uAGtGQuvXN2LcQ9aA--KkTEtNo10Eh0WreON1ivFt7JwtvO4orJPskpoMzaqMXVhnWxYjmJKhP7PVXC7Ppj9fzD1DbdTimM</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3149693795</pqid></control><display><type>article</type><title>Solution of Fractional Differential Boundary Value Problems with Arbitrary Values of Derivative Orders for Time Series Analysis</title><source>Publicly Available Content Database</source><creator>Zhukov, Dmitry ; Zhmud, Vadim ; Otradnov, Konstantin ; Kalinin, Vladimir</creator><creatorcontrib>Zhukov, Dmitry ; Zhmud, Vadim ; Otradnov, Konstantin ; Kalinin, Vladimir</creatorcontrib><description>The paper considers the solution of a fractional differential boundary value problem, that is, a diffusion-type equation with arbitrary values of the derivative orders on an infinite axis. The difference between the obtained results and other authors’ ones is that these involve arbitrary values of the derivative orders. The solutions described in the literature, as a rule, are considered in the case when the fractional time derivative β lies in the range: 0 < β ≤ 1, and the fractional state derivative α (the variable describing the state of the process) is in the range: 1 < α ≤ 2. The solution presented in the article allows us to consider any ranges for α and β, if the inequality 0 < β/α ≤ 0.865 is satisfied in the range β/α. In order to solve the boundary value problem, the probability density function of the observed state x of a certain process (for example, the magnitude of the deviation of the levels of a time series) from time t (for example, the time interval for calculating the amplitudes of the deviation of the levels of a time series) can be captured.</description><identifier>ISSN: 2227-7390</identifier><identifier>EISSN: 2227-7390</identifier><identifier>DOI: 10.3390/math12243905</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Boundary value problems ; Derivatives ; Deviation ; electoral processes ; fractional differential equations ; Numerical analysis ; Probability density functions ; Time series ; time series analysis</subject><ispartof>Mathematics (Basel), 2024-12, Vol.12 (24), p.3905</ispartof><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c254t-1481af11fda0a75b1c48fee69f4351e0aabd22820a021cb9e14801c8e10e9733</cites><orcidid>0000-0002-1708-9211 ; 0000-0002-0055-9651</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3149693795/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3149693795?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,25731,27901,27902,36989,44566,75096</link.rule.ids></links><search><creatorcontrib>Zhukov, Dmitry</creatorcontrib><creatorcontrib>Zhmud, Vadim</creatorcontrib><creatorcontrib>Otradnov, Konstantin</creatorcontrib><creatorcontrib>Kalinin, Vladimir</creatorcontrib><title>Solution of Fractional Differential Boundary Value Problems with Arbitrary Values of Derivative Orders for Time Series Analysis</title><title>Mathematics (Basel)</title><description>The paper considers the solution of a fractional differential boundary value problem, that is, a diffusion-type equation with arbitrary values of the derivative orders on an infinite axis. The difference between the obtained results and other authors’ ones is that these involve arbitrary values of the derivative orders. The solutions described in the literature, as a rule, are considered in the case when the fractional time derivative β lies in the range: 0 < β ≤ 1, and the fractional state derivative α (the variable describing the state of the process) is in the range: 1 < α ≤ 2. The solution presented in the article allows us to consider any ranges for α and β, if the inequality 0 < β/α ≤ 0.865 is satisfied in the range β/α. In order to solve the boundary value problem, the probability density function of the observed state x of a certain process (for example, the magnitude of the deviation of the levels of a time series) from time t (for example, the time interval for calculating the amplitudes of the deviation of the levels of a time series) can be captured.</description><subject>Boundary value problems</subject><subject>Derivatives</subject><subject>Deviation</subject><subject>electoral processes</subject><subject>fractional differential equations</subject><subject>Numerical analysis</subject><subject>Probability density functions</subject><subject>Time series</subject><subject>time series analysis</subject><issn>2227-7390</issn><issn>2227-7390</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1LAzEQXURBUW_-gIBXq_na7uZYP6qCoGDxGmazE03ZNjpJFU_-dVMrYi55M_PmvRmmqo4EP1XK8LMF5BchpS643qr2pJTNqCnB9j-8Wx2mNOflGaFabfaqr8c4rHKISxY9mxK4NYaBXQbvkXCZQwnO42rZA32yJxhWyB4odgMuEvsI-YVNqAuZ_qppLXSJFN4hh3dk99QjJeYjsVlYIHsspUKaFJPPFNJBteNhSHj4--9Xs-nV7OJmdHd_fXsxuRs5Wes8EroV4IXwPXBo6k443XrEsfFa1QI5QNdL2UoOXArXGSwNXLgWBUfTKLVf3W5k-whz-0phUQa2EYL9SUR6tkA5uAGtGQuvXN2LcQ9aA--KkTEtNo10Eh0WreON1ivFt7JwtvO4orJPskpoMzaqMXVhnWxYjmJKhP7PVXC7Ppj9fzD1DbdTimM</recordid><startdate>20241201</startdate><enddate>20241201</enddate><creator>Zhukov, Dmitry</creator><creator>Zhmud, Vadim</creator><creator>Otradnov, Konstantin</creator><creator>Kalinin, Vladimir</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P62</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-1708-9211</orcidid><orcidid>https://orcid.org/0000-0002-0055-9651</orcidid></search><sort><creationdate>20241201</creationdate><title>Solution of Fractional Differential Boundary Value Problems with Arbitrary Values of Derivative Orders for Time Series Analysis</title><author>Zhukov, Dmitry ; Zhmud, Vadim ; Otradnov, Konstantin ; Kalinin, Vladimir</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c254t-1481af11fda0a75b1c48fee69f4351e0aabd22820a021cb9e14801c8e10e9733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Boundary value problems</topic><topic>Derivatives</topic><topic>Deviation</topic><topic>electoral processes</topic><topic>fractional differential equations</topic><topic>Numerical analysis</topic><topic>Probability density functions</topic><topic>Time series</topic><topic>time series analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhukov, Dmitry</creatorcontrib><creatorcontrib>Zhmud, Vadim</creatorcontrib><creatorcontrib>Otradnov, Konstantin</creatorcontrib><creatorcontrib>Kalinin, Vladimir</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied & Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><collection>Directory of Open Access Journals</collection><jtitle>Mathematics (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhukov, Dmitry</au><au>Zhmud, Vadim</au><au>Otradnov, Konstantin</au><au>Kalinin, Vladimir</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Solution of Fractional Differential Boundary Value Problems with Arbitrary Values of Derivative Orders for Time Series Analysis</atitle><jtitle>Mathematics (Basel)</jtitle><date>2024-12-01</date><risdate>2024</risdate><volume>12</volume><issue>24</issue><spage>3905</spage><pages>3905-</pages><issn>2227-7390</issn><eissn>2227-7390</eissn><abstract>The paper considers the solution of a fractional differential boundary value problem, that is, a diffusion-type equation with arbitrary values of the derivative orders on an infinite axis. The difference between the obtained results and other authors’ ones is that these involve arbitrary values of the derivative orders. The solutions described in the literature, as a rule, are considered in the case when the fractional time derivative β lies in the range: 0 < β ≤ 1, and the fractional state derivative α (the variable describing the state of the process) is in the range: 1 < α ≤ 2. The solution presented in the article allows us to consider any ranges for α and β, if the inequality 0 < β/α ≤ 0.865 is satisfied in the range β/α. In order to solve the boundary value problem, the probability density function of the observed state x of a certain process (for example, the magnitude of the deviation of the levels of a time series) from time t (for example, the time interval for calculating the amplitudes of the deviation of the levels of a time series) can be captured.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/math12243905</doi><orcidid>https://orcid.org/0000-0002-1708-9211</orcidid><orcidid>https://orcid.org/0000-0002-0055-9651</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2227-7390 |
ispartof | Mathematics (Basel), 2024-12, Vol.12 (24), p.3905 |
issn | 2227-7390 2227-7390 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_961f3c5d16da44a0b8fe998e772c2ece |
source | Publicly Available Content Database |
subjects | Boundary value problems Derivatives Deviation electoral processes fractional differential equations Numerical analysis Probability density functions Time series time series analysis |
title | Solution of Fractional Differential Boundary Value Problems with Arbitrary Values of Derivative Orders for Time Series Analysis |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-23T02%3A47%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Solution%20of%20Fractional%20Differential%20Boundary%20Value%20Problems%20with%20Arbitrary%20Values%20of%20Derivative%20Orders%20for%20Time%20Series%20Analysis&rft.jtitle=Mathematics%20(Basel)&rft.au=Zhukov,%20Dmitry&rft.date=2024-12-01&rft.volume=12&rft.issue=24&rft.spage=3905&rft.pages=3905-&rft.issn=2227-7390&rft.eissn=2227-7390&rft_id=info:doi/10.3390/math12243905&rft_dat=%3Cproquest_doaj_%3E3149693795%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c254t-1481af11fda0a75b1c48fee69f4351e0aabd22820a021cb9e14801c8e10e9733%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3149693795&rft_id=info:pmid/&rfr_iscdi=true |