Loading…

Solution of Fractional Differential Boundary Value Problems with Arbitrary Values of Derivative Orders for Time Series Analysis

The paper considers the solution of a fractional differential boundary value problem, that is, a diffusion-type equation with arbitrary values of the derivative orders on an infinite axis. The difference between the obtained results and other authors’ ones is that these involve arbitrary values of t...

Full description

Saved in:
Bibliographic Details
Published in:Mathematics (Basel) 2024-12, Vol.12 (24), p.3905
Main Authors: Zhukov, Dmitry, Zhmud, Vadim, Otradnov, Konstantin, Kalinin, Vladimir
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c254t-1481af11fda0a75b1c48fee69f4351e0aabd22820a021cb9e14801c8e10e9733
container_end_page
container_issue 24
container_start_page 3905
container_title Mathematics (Basel)
container_volume 12
creator Zhukov, Dmitry
Zhmud, Vadim
Otradnov, Konstantin
Kalinin, Vladimir
description The paper considers the solution of a fractional differential boundary value problem, that is, a diffusion-type equation with arbitrary values of the derivative orders on an infinite axis. The difference between the obtained results and other authors’ ones is that these involve arbitrary values of the derivative orders. The solutions described in the literature, as a rule, are considered in the case when the fractional time derivative β lies in the range: 0 < β ≤ 1, and the fractional state derivative α (the variable describing the state of the process) is in the range: 1 < α ≤ 2. The solution presented in the article allows us to consider any ranges for α and β, if the inequality 0 < β/α ≤ 0.865 is satisfied in the range β/α. In order to solve the boundary value problem, the probability density function of the observed state x of a certain process (for example, the magnitude of the deviation of the levels of a time series) from time t (for example, the time interval for calculating the amplitudes of the deviation of the levels of a time series) can be captured.
doi_str_mv 10.3390/math12243905
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_961f3c5d16da44a0b8fe998e772c2ece</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_961f3c5d16da44a0b8fe998e772c2ece</doaj_id><sourcerecordid>3149693795</sourcerecordid><originalsourceid>FETCH-LOGICAL-c254t-1481af11fda0a75b1c48fee69f4351e0aabd22820a021cb9e14801c8e10e9733</originalsourceid><addsrcrecordid>eNpNUU1LAzEQXURBUW_-gIBXq_na7uZYP6qCoGDxGmazE03ZNjpJFU_-dVMrYi55M_PmvRmmqo4EP1XK8LMF5BchpS643qr2pJTNqCnB9j-8Wx2mNOflGaFabfaqr8c4rHKISxY9mxK4NYaBXQbvkXCZQwnO42rZA32yJxhWyB4odgMuEvsI-YVNqAuZ_qppLXSJFN4hh3dk99QjJeYjsVlYIHsspUKaFJPPFNJBteNhSHj4--9Xs-nV7OJmdHd_fXsxuRs5Wes8EroV4IXwPXBo6k443XrEsfFa1QI5QNdL2UoOXArXGSwNXLgWBUfTKLVf3W5k-whz-0phUQa2EYL9SUR6tkA5uAGtGQuvXN2LcQ9aA--KkTEtNo10Eh0WreON1ivFt7JwtvO4orJPskpoMzaqMXVhnWxYjmJKhP7PVXC7Ppj9fzD1DbdTimM</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3149693795</pqid></control><display><type>article</type><title>Solution of Fractional Differential Boundary Value Problems with Arbitrary Values of Derivative Orders for Time Series Analysis</title><source>Publicly Available Content Database</source><creator>Zhukov, Dmitry ; Zhmud, Vadim ; Otradnov, Konstantin ; Kalinin, Vladimir</creator><creatorcontrib>Zhukov, Dmitry ; Zhmud, Vadim ; Otradnov, Konstantin ; Kalinin, Vladimir</creatorcontrib><description>The paper considers the solution of a fractional differential boundary value problem, that is, a diffusion-type equation with arbitrary values of the derivative orders on an infinite axis. The difference between the obtained results and other authors’ ones is that these involve arbitrary values of the derivative orders. The solutions described in the literature, as a rule, are considered in the case when the fractional time derivative β lies in the range: 0 &lt; β ≤ 1, and the fractional state derivative α (the variable describing the state of the process) is in the range: 1 &lt; α ≤ 2. The solution presented in the article allows us to consider any ranges for α and β, if the inequality 0 &lt; β/α ≤ 0.865 is satisfied in the range β/α. In order to solve the boundary value problem, the probability density function of the observed state x of a certain process (for example, the magnitude of the deviation of the levels of a time series) from time t (for example, the time interval for calculating the amplitudes of the deviation of the levels of a time series) can be captured.</description><identifier>ISSN: 2227-7390</identifier><identifier>EISSN: 2227-7390</identifier><identifier>DOI: 10.3390/math12243905</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Boundary value problems ; Derivatives ; Deviation ; electoral processes ; fractional differential equations ; Numerical analysis ; Probability density functions ; Time series ; time series analysis</subject><ispartof>Mathematics (Basel), 2024-12, Vol.12 (24), p.3905</ispartof><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c254t-1481af11fda0a75b1c48fee69f4351e0aabd22820a021cb9e14801c8e10e9733</cites><orcidid>0000-0002-1708-9211 ; 0000-0002-0055-9651</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3149693795/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3149693795?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,25731,27901,27902,36989,44566,75096</link.rule.ids></links><search><creatorcontrib>Zhukov, Dmitry</creatorcontrib><creatorcontrib>Zhmud, Vadim</creatorcontrib><creatorcontrib>Otradnov, Konstantin</creatorcontrib><creatorcontrib>Kalinin, Vladimir</creatorcontrib><title>Solution of Fractional Differential Boundary Value Problems with Arbitrary Values of Derivative Orders for Time Series Analysis</title><title>Mathematics (Basel)</title><description>The paper considers the solution of a fractional differential boundary value problem, that is, a diffusion-type equation with arbitrary values of the derivative orders on an infinite axis. The difference between the obtained results and other authors’ ones is that these involve arbitrary values of the derivative orders. The solutions described in the literature, as a rule, are considered in the case when the fractional time derivative β lies in the range: 0 &lt; β ≤ 1, and the fractional state derivative α (the variable describing the state of the process) is in the range: 1 &lt; α ≤ 2. The solution presented in the article allows us to consider any ranges for α and β, if the inequality 0 &lt; β/α ≤ 0.865 is satisfied in the range β/α. In order to solve the boundary value problem, the probability density function of the observed state x of a certain process (for example, the magnitude of the deviation of the levels of a time series) from time t (for example, the time interval for calculating the amplitudes of the deviation of the levels of a time series) can be captured.</description><subject>Boundary value problems</subject><subject>Derivatives</subject><subject>Deviation</subject><subject>electoral processes</subject><subject>fractional differential equations</subject><subject>Numerical analysis</subject><subject>Probability density functions</subject><subject>Time series</subject><subject>time series analysis</subject><issn>2227-7390</issn><issn>2227-7390</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1LAzEQXURBUW_-gIBXq_na7uZYP6qCoGDxGmazE03ZNjpJFU_-dVMrYi55M_PmvRmmqo4EP1XK8LMF5BchpS643qr2pJTNqCnB9j-8Wx2mNOflGaFabfaqr8c4rHKISxY9mxK4NYaBXQbvkXCZQwnO42rZA32yJxhWyB4odgMuEvsI-YVNqAuZ_qppLXSJFN4hh3dk99QjJeYjsVlYIHsspUKaFJPPFNJBteNhSHj4--9Xs-nV7OJmdHd_fXsxuRs5Wes8EroV4IXwPXBo6k443XrEsfFa1QI5QNdL2UoOXArXGSwNXLgWBUfTKLVf3W5k-whz-0phUQa2EYL9SUR6tkA5uAGtGQuvXN2LcQ9aA--KkTEtNo10Eh0WreON1ivFt7JwtvO4orJPskpoMzaqMXVhnWxYjmJKhP7PVXC7Ppj9fzD1DbdTimM</recordid><startdate>20241201</startdate><enddate>20241201</enddate><creator>Zhukov, Dmitry</creator><creator>Zhmud, Vadim</creator><creator>Otradnov, Konstantin</creator><creator>Kalinin, Vladimir</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P62</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-1708-9211</orcidid><orcidid>https://orcid.org/0000-0002-0055-9651</orcidid></search><sort><creationdate>20241201</creationdate><title>Solution of Fractional Differential Boundary Value Problems with Arbitrary Values of Derivative Orders for Time Series Analysis</title><author>Zhukov, Dmitry ; Zhmud, Vadim ; Otradnov, Konstantin ; Kalinin, Vladimir</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c254t-1481af11fda0a75b1c48fee69f4351e0aabd22820a021cb9e14801c8e10e9733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Boundary value problems</topic><topic>Derivatives</topic><topic>Deviation</topic><topic>electoral processes</topic><topic>fractional differential equations</topic><topic>Numerical analysis</topic><topic>Probability density functions</topic><topic>Time series</topic><topic>time series analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhukov, Dmitry</creatorcontrib><creatorcontrib>Zhmud, Vadim</creatorcontrib><creatorcontrib>Otradnov, Konstantin</creatorcontrib><creatorcontrib>Kalinin, Vladimir</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied &amp; Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><collection>Directory of Open Access Journals</collection><jtitle>Mathematics (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhukov, Dmitry</au><au>Zhmud, Vadim</au><au>Otradnov, Konstantin</au><au>Kalinin, Vladimir</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Solution of Fractional Differential Boundary Value Problems with Arbitrary Values of Derivative Orders for Time Series Analysis</atitle><jtitle>Mathematics (Basel)</jtitle><date>2024-12-01</date><risdate>2024</risdate><volume>12</volume><issue>24</issue><spage>3905</spage><pages>3905-</pages><issn>2227-7390</issn><eissn>2227-7390</eissn><abstract>The paper considers the solution of a fractional differential boundary value problem, that is, a diffusion-type equation with arbitrary values of the derivative orders on an infinite axis. The difference between the obtained results and other authors’ ones is that these involve arbitrary values of the derivative orders. The solutions described in the literature, as a rule, are considered in the case when the fractional time derivative β lies in the range: 0 &lt; β ≤ 1, and the fractional state derivative α (the variable describing the state of the process) is in the range: 1 &lt; α ≤ 2. The solution presented in the article allows us to consider any ranges for α and β, if the inequality 0 &lt; β/α ≤ 0.865 is satisfied in the range β/α. In order to solve the boundary value problem, the probability density function of the observed state x of a certain process (for example, the magnitude of the deviation of the levels of a time series) from time t (for example, the time interval for calculating the amplitudes of the deviation of the levels of a time series) can be captured.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/math12243905</doi><orcidid>https://orcid.org/0000-0002-1708-9211</orcidid><orcidid>https://orcid.org/0000-0002-0055-9651</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2227-7390
ispartof Mathematics (Basel), 2024-12, Vol.12 (24), p.3905
issn 2227-7390
2227-7390
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_961f3c5d16da44a0b8fe998e772c2ece
source Publicly Available Content Database
subjects Boundary value problems
Derivatives
Deviation
electoral processes
fractional differential equations
Numerical analysis
Probability density functions
Time series
time series analysis
title Solution of Fractional Differential Boundary Value Problems with Arbitrary Values of Derivative Orders for Time Series Analysis
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-23T02%3A47%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Solution%20of%20Fractional%20Differential%20Boundary%20Value%20Problems%20with%20Arbitrary%20Values%20of%20Derivative%20Orders%20for%20Time%20Series%20Analysis&rft.jtitle=Mathematics%20(Basel)&rft.au=Zhukov,%20Dmitry&rft.date=2024-12-01&rft.volume=12&rft.issue=24&rft.spage=3905&rft.pages=3905-&rft.issn=2227-7390&rft.eissn=2227-7390&rft_id=info:doi/10.3390/math12243905&rft_dat=%3Cproquest_doaj_%3E3149693795%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c254t-1481af11fda0a75b1c48fee69f4351e0aabd22820a021cb9e14801c8e10e9733%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3149693795&rft_id=info:pmid/&rfr_iscdi=true