Loading…

(-)-Epigallocatechin-3-gallate Directly Binds Cyclophilin D: A Potential Mechanism for Mitochondrial Protection

(1) Background: (-)-Epigallocatechin-3-gallate (EGCG) has been reported to improve mitochondrial function in cell models, while the underlying mechanism is not clear. Cyclophilin D (CypD) is a key protein that regulates mitochondrial permeability transition pore (mPTP) opening. (2) Methods: In this...

Full description

Saved in:
Bibliographic Details
Published in:Molecules (Basel, Switzerland) Switzerland), 2022-12, Vol.27 (24), p.8661
Main Authors: Wu, Annan, Zhang, Jie, Li, Quanhong, Liao, Xiaojun, Wang, Chunyu, Zhao, Jing
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c560t-2e170be3f27b32e86f043ec1cd23600a8a6b32bc0b1dec9bb48b14870c3540003
cites cdi_FETCH-LOGICAL-c560t-2e170be3f27b32e86f043ec1cd23600a8a6b32bc0b1dec9bb48b14870c3540003
container_end_page
container_issue 24
container_start_page 8661
container_title Molecules (Basel, Switzerland)
container_volume 27
creator Wu, Annan
Zhang, Jie
Li, Quanhong
Liao, Xiaojun
Wang, Chunyu
Zhao, Jing
description (1) Background: (-)-Epigallocatechin-3-gallate (EGCG) has been reported to improve mitochondrial function in cell models, while the underlying mechanism is not clear. Cyclophilin D (CypD) is a key protein that regulates mitochondrial permeability transition pore (mPTP) opening. (2) Methods: In this study, we found that EGCG directly binds to CypD and this interaction was investigated by surface plasmon resonance (SPR), nuclear magnetic resonance (NMR) and molecular dynamic (MD) simulation. (3) Results: SPR showed an affinity of 2.7 × 10 M. The binding sites of EGCG on CypD were mapped to three regions by 2D NMR titration, which are Region 1 (E23-V29), Region 2 (T89-G104) and Region 3 (G124-I133). Molecular docking showed binding interface consistent with 2D NMR titration. MD simulations revealed that at least two conformations of EGCG-CypD complex exist, one with E23, D27, L90 and V93 as the most contributed residues and E23, L5 and I133 for the other. The major driven force for EGCG-CypD binding are Van der Waals and electrostatic interactions. (4) Conclusions: These results provide the structural basis for EGCG-CypD interaction, which might be a potential mechanism of how EGCG protects mitochondrial functions.
doi_str_mv 10.3390/molecules27248661
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_961fff30615846a181718007ccd0ebd0</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A745960953</galeid><doaj_id>oai_doaj_org_article_961fff30615846a181718007ccd0ebd0</doaj_id><sourcerecordid>A745960953</sourcerecordid><originalsourceid>FETCH-LOGICAL-c560t-2e170be3f27b32e86f043ec1cd23600a8a6b32bc0b1dec9bb48b14870c3540003</originalsourceid><addsrcrecordid>eNptkk1v1DAQhiMEoqXwA7igSFzaQ8o4_gwHpGVboFIreoCz5TjOrleOvdgJ0v77OmwpXUA-2DN-38ea8RTFawTnGDfwbgjO6MmZVPOaCMbQk-IYkRoqDKR5-uh8VLxIaQNQI4Lo8-IIM0o5b-hxEU6rs-pya1fKuaDVaPTa-gpXc5yj8sJGo0e3Kz9a36VyudMubNfWWV9evC8X5W0YjR-tcuVNtipv01D2IZY3dgx6HXwX57vbmGV6tMG_LJ71yiXz6n4_Kb5_uvy2_FJdf_18tVxcV5oyGKvaIA6twX3NW1wbwXog2GikuxozACUUy_lWQ4s6o5u2JaJFRHDQmBIAwCfF1Z7bBbWR22gHFXcyKCt_JUJcSRVHq52RDUN932NgiArCFBKIIwHAte7AtN3M-rBnbad2MJ3OBUflDqCHN96u5Sr8lA0XVHCWAaf3gBh-TCaNcrBJm9xhb8KUZM2pQAAEoSx9-5d0E6boc6tmFeOsaQj9o8rfZKT1fcjv6hkqF5zQhkFDcVad_0eVV2cGq4M3vc35AwPaG3QMKUXTP9SIQM4TJ_-ZuOx587g5D47fI4bvAAz70jQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2756769945</pqid></control><display><type>article</type><title>(-)-Epigallocatechin-3-gallate Directly Binds Cyclophilin D: A Potential Mechanism for Mitochondrial Protection</title><source>PubMed Central (Open Access)</source><source>Publicly Available Content Database</source><creator>Wu, Annan ; Zhang, Jie ; Li, Quanhong ; Liao, Xiaojun ; Wang, Chunyu ; Zhao, Jing</creator><creatorcontrib>Wu, Annan ; Zhang, Jie ; Li, Quanhong ; Liao, Xiaojun ; Wang, Chunyu ; Zhao, Jing</creatorcontrib><description>(1) Background: (-)-Epigallocatechin-3-gallate (EGCG) has been reported to improve mitochondrial function in cell models, while the underlying mechanism is not clear. Cyclophilin D (CypD) is a key protein that regulates mitochondrial permeability transition pore (mPTP) opening. (2) Methods: In this study, we found that EGCG directly binds to CypD and this interaction was investigated by surface plasmon resonance (SPR), nuclear magnetic resonance (NMR) and molecular dynamic (MD) simulation. (3) Results: SPR showed an affinity of 2.7 × 10 M. The binding sites of EGCG on CypD were mapped to three regions by 2D NMR titration, which are Region 1 (E23-V29), Region 2 (T89-G104) and Region 3 (G124-I133). Molecular docking showed binding interface consistent with 2D NMR titration. MD simulations revealed that at least two conformations of EGCG-CypD complex exist, one with E23, D27, L90 and V93 as the most contributed residues and E23, L5 and I133 for the other. The major driven force for EGCG-CypD binding are Van der Waals and electrostatic interactions. (4) Conclusions: These results provide the structural basis for EGCG-CypD interaction, which might be a potential mechanism of how EGCG protects mitochondrial functions.</description><identifier>ISSN: 1420-3049</identifier><identifier>EISSN: 1420-3049</identifier><identifier>DOI: 10.3390/molecules27248661</identifier><identifier>PMID: 36557795</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Amino acids ; Analysis ; Binding sites ; Care and treatment ; Cell culture ; CypD ; Diagnosis ; EGCG ; Electrostatic properties ; Energy ; Epigallocatechin gallate ; Green tea ; Health aspects ; interaction ; Membrane permeability ; Mitochondria - metabolism ; Mitochondrial diseases ; Mitochondrial Membrane Transport Proteins - metabolism ; Mitochondrial permeability transition pore ; Molecular docking ; Molecular Docking Simulation ; Molecular dynamics ; mPTP ; NMR ; Nuclear magnetic resonance ; Nutritional aspects ; Oxidative phosphorylation ; Peptidyl-Prolyl Isomerase F - metabolism ; Permeability ; Proteins ; Resonance ; Sensors ; Simulation ; Software ; Statistical analysis ; Surface plasmon resonance ; Titration ; Variance analysis</subject><ispartof>Molecules (Basel, Switzerland), 2022-12, Vol.27 (24), p.8661</ispartof><rights>COPYRIGHT 2022 MDPI AG</rights><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 by the authors. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c560t-2e170be3f27b32e86f043ec1cd23600a8a6b32bc0b1dec9bb48b14870c3540003</citedby><cites>FETCH-LOGICAL-c560t-2e170be3f27b32e86f043ec1cd23600a8a6b32bc0b1dec9bb48b14870c3540003</cites><orcidid>0000-0002-9472-8072 ; 0000-0001-5681-6058 ; 0000-0001-6231-293X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2756769945/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2756769945?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36557795$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wu, Annan</creatorcontrib><creatorcontrib>Zhang, Jie</creatorcontrib><creatorcontrib>Li, Quanhong</creatorcontrib><creatorcontrib>Liao, Xiaojun</creatorcontrib><creatorcontrib>Wang, Chunyu</creatorcontrib><creatorcontrib>Zhao, Jing</creatorcontrib><title>(-)-Epigallocatechin-3-gallate Directly Binds Cyclophilin D: A Potential Mechanism for Mitochondrial Protection</title><title>Molecules (Basel, Switzerland)</title><addtitle>Molecules</addtitle><description>(1) Background: (-)-Epigallocatechin-3-gallate (EGCG) has been reported to improve mitochondrial function in cell models, while the underlying mechanism is not clear. Cyclophilin D (CypD) is a key protein that regulates mitochondrial permeability transition pore (mPTP) opening. (2) Methods: In this study, we found that EGCG directly binds to CypD and this interaction was investigated by surface plasmon resonance (SPR), nuclear magnetic resonance (NMR) and molecular dynamic (MD) simulation. (3) Results: SPR showed an affinity of 2.7 × 10 M. The binding sites of EGCG on CypD were mapped to three regions by 2D NMR titration, which are Region 1 (E23-V29), Region 2 (T89-G104) and Region 3 (G124-I133). Molecular docking showed binding interface consistent with 2D NMR titration. MD simulations revealed that at least two conformations of EGCG-CypD complex exist, one with E23, D27, L90 and V93 as the most contributed residues and E23, L5 and I133 for the other. The major driven force for EGCG-CypD binding are Van der Waals and electrostatic interactions. (4) Conclusions: These results provide the structural basis for EGCG-CypD interaction, which might be a potential mechanism of how EGCG protects mitochondrial functions.</description><subject>Amino acids</subject><subject>Analysis</subject><subject>Binding sites</subject><subject>Care and treatment</subject><subject>Cell culture</subject><subject>CypD</subject><subject>Diagnosis</subject><subject>EGCG</subject><subject>Electrostatic properties</subject><subject>Energy</subject><subject>Epigallocatechin gallate</subject><subject>Green tea</subject><subject>Health aspects</subject><subject>interaction</subject><subject>Membrane permeability</subject><subject>Mitochondria - metabolism</subject><subject>Mitochondrial diseases</subject><subject>Mitochondrial Membrane Transport Proteins - metabolism</subject><subject>Mitochondrial permeability transition pore</subject><subject>Molecular docking</subject><subject>Molecular Docking Simulation</subject><subject>Molecular dynamics</subject><subject>mPTP</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Nutritional aspects</subject><subject>Oxidative phosphorylation</subject><subject>Peptidyl-Prolyl Isomerase F - metabolism</subject><subject>Permeability</subject><subject>Proteins</subject><subject>Resonance</subject><subject>Sensors</subject><subject>Simulation</subject><subject>Software</subject><subject>Statistical analysis</subject><subject>Surface plasmon resonance</subject><subject>Titration</subject><subject>Variance analysis</subject><issn>1420-3049</issn><issn>1420-3049</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptkk1v1DAQhiMEoqXwA7igSFzaQ8o4_gwHpGVboFIreoCz5TjOrleOvdgJ0v77OmwpXUA-2DN-38ea8RTFawTnGDfwbgjO6MmZVPOaCMbQk-IYkRoqDKR5-uh8VLxIaQNQI4Lo8-IIM0o5b-hxEU6rs-pya1fKuaDVaPTa-gpXc5yj8sJGo0e3Kz9a36VyudMubNfWWV9evC8X5W0YjR-tcuVNtipv01D2IZY3dgx6HXwX57vbmGV6tMG_LJ71yiXz6n4_Kb5_uvy2_FJdf_18tVxcV5oyGKvaIA6twX3NW1wbwXog2GikuxozACUUy_lWQ4s6o5u2JaJFRHDQmBIAwCfF1Z7bBbWR22gHFXcyKCt_JUJcSRVHq52RDUN932NgiArCFBKIIwHAte7AtN3M-rBnbad2MJ3OBUflDqCHN96u5Sr8lA0XVHCWAaf3gBh-TCaNcrBJm9xhb8KUZM2pQAAEoSx9-5d0E6boc6tmFeOsaQj9o8rfZKT1fcjv6hkqF5zQhkFDcVad_0eVV2cGq4M3vc35AwPaG3QMKUXTP9SIQM4TJ_-ZuOx587g5D47fI4bvAAz70jQ</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>Wu, Annan</creator><creator>Zhang, Jie</creator><creator>Li, Quanhong</creator><creator>Liao, Xiaojun</creator><creator>Wang, Chunyu</creator><creator>Zhao, Jing</creator><general>MDPI AG</general><general>MDPI</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-9472-8072</orcidid><orcidid>https://orcid.org/0000-0001-5681-6058</orcidid><orcidid>https://orcid.org/0000-0001-6231-293X</orcidid></search><sort><creationdate>20221201</creationdate><title>(-)-Epigallocatechin-3-gallate Directly Binds Cyclophilin D: A Potential Mechanism for Mitochondrial Protection</title><author>Wu, Annan ; Zhang, Jie ; Li, Quanhong ; Liao, Xiaojun ; Wang, Chunyu ; Zhao, Jing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c560t-2e170be3f27b32e86f043ec1cd23600a8a6b32bc0b1dec9bb48b14870c3540003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Amino acids</topic><topic>Analysis</topic><topic>Binding sites</topic><topic>Care and treatment</topic><topic>Cell culture</topic><topic>CypD</topic><topic>Diagnosis</topic><topic>EGCG</topic><topic>Electrostatic properties</topic><topic>Energy</topic><topic>Epigallocatechin gallate</topic><topic>Green tea</topic><topic>Health aspects</topic><topic>interaction</topic><topic>Membrane permeability</topic><topic>Mitochondria - metabolism</topic><topic>Mitochondrial diseases</topic><topic>Mitochondrial Membrane Transport Proteins - metabolism</topic><topic>Mitochondrial permeability transition pore</topic><topic>Molecular docking</topic><topic>Molecular Docking Simulation</topic><topic>Molecular dynamics</topic><topic>mPTP</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Nutritional aspects</topic><topic>Oxidative phosphorylation</topic><topic>Peptidyl-Prolyl Isomerase F - metabolism</topic><topic>Permeability</topic><topic>Proteins</topic><topic>Resonance</topic><topic>Sensors</topic><topic>Simulation</topic><topic>Software</topic><topic>Statistical analysis</topic><topic>Surface plasmon resonance</topic><topic>Titration</topic><topic>Variance analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Annan</creatorcontrib><creatorcontrib>Zhang, Jie</creatorcontrib><creatorcontrib>Li, Quanhong</creatorcontrib><creatorcontrib>Liao, Xiaojun</creatorcontrib><creatorcontrib>Wang, Chunyu</creatorcontrib><creatorcontrib>Zhao, Jing</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Molecules (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Annan</au><au>Zhang, Jie</au><au>Li, Quanhong</au><au>Liao, Xiaojun</au><au>Wang, Chunyu</au><au>Zhao, Jing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>(-)-Epigallocatechin-3-gallate Directly Binds Cyclophilin D: A Potential Mechanism for Mitochondrial Protection</atitle><jtitle>Molecules (Basel, Switzerland)</jtitle><addtitle>Molecules</addtitle><date>2022-12-01</date><risdate>2022</risdate><volume>27</volume><issue>24</issue><spage>8661</spage><pages>8661-</pages><issn>1420-3049</issn><eissn>1420-3049</eissn><abstract>(1) Background: (-)-Epigallocatechin-3-gallate (EGCG) has been reported to improve mitochondrial function in cell models, while the underlying mechanism is not clear. Cyclophilin D (CypD) is a key protein that regulates mitochondrial permeability transition pore (mPTP) opening. (2) Methods: In this study, we found that EGCG directly binds to CypD and this interaction was investigated by surface plasmon resonance (SPR), nuclear magnetic resonance (NMR) and molecular dynamic (MD) simulation. (3) Results: SPR showed an affinity of 2.7 × 10 M. The binding sites of EGCG on CypD were mapped to three regions by 2D NMR titration, which are Region 1 (E23-V29), Region 2 (T89-G104) and Region 3 (G124-I133). Molecular docking showed binding interface consistent with 2D NMR titration. MD simulations revealed that at least two conformations of EGCG-CypD complex exist, one with E23, D27, L90 and V93 as the most contributed residues and E23, L5 and I133 for the other. The major driven force for EGCG-CypD binding are Van der Waals and electrostatic interactions. (4) Conclusions: These results provide the structural basis for EGCG-CypD interaction, which might be a potential mechanism of how EGCG protects mitochondrial functions.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>36557795</pmid><doi>10.3390/molecules27248661</doi><orcidid>https://orcid.org/0000-0002-9472-8072</orcidid><orcidid>https://orcid.org/0000-0001-5681-6058</orcidid><orcidid>https://orcid.org/0000-0001-6231-293X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1420-3049
ispartof Molecules (Basel, Switzerland), 2022-12, Vol.27 (24), p.8661
issn 1420-3049
1420-3049
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_961fff30615846a181718007ccd0ebd0
source PubMed Central (Open Access); Publicly Available Content Database
subjects Amino acids
Analysis
Binding sites
Care and treatment
Cell culture
CypD
Diagnosis
EGCG
Electrostatic properties
Energy
Epigallocatechin gallate
Green tea
Health aspects
interaction
Membrane permeability
Mitochondria - metabolism
Mitochondrial diseases
Mitochondrial Membrane Transport Proteins - metabolism
Mitochondrial permeability transition pore
Molecular docking
Molecular Docking Simulation
Molecular dynamics
mPTP
NMR
Nuclear magnetic resonance
Nutritional aspects
Oxidative phosphorylation
Peptidyl-Prolyl Isomerase F - metabolism
Permeability
Proteins
Resonance
Sensors
Simulation
Software
Statistical analysis
Surface plasmon resonance
Titration
Variance analysis
title (-)-Epigallocatechin-3-gallate Directly Binds Cyclophilin D: A Potential Mechanism for Mitochondrial Protection
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T19%3A57%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=(-)-Epigallocatechin-3-gallate%20Directly%20Binds%20Cyclophilin%20D:%20A%20Potential%20Mechanism%20for%20Mitochondrial%20Protection&rft.jtitle=Molecules%20(Basel,%20Switzerland)&rft.au=Wu,%20Annan&rft.date=2022-12-01&rft.volume=27&rft.issue=24&rft.spage=8661&rft.pages=8661-&rft.issn=1420-3049&rft.eissn=1420-3049&rft_id=info:doi/10.3390/molecules27248661&rft_dat=%3Cgale_doaj_%3EA745960953%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c560t-2e170be3f27b32e86f043ec1cd23600a8a6b32bc0b1dec9bb48b14870c3540003%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2756769945&rft_id=info:pmid/36557795&rft_galeid=A745960953&rfr_iscdi=true