Loading…
(-)-Epigallocatechin-3-gallate Directly Binds Cyclophilin D: A Potential Mechanism for Mitochondrial Protection
(1) Background: (-)-Epigallocatechin-3-gallate (EGCG) has been reported to improve mitochondrial function in cell models, while the underlying mechanism is not clear. Cyclophilin D (CypD) is a key protein that regulates mitochondrial permeability transition pore (mPTP) opening. (2) Methods: In this...
Saved in:
Published in: | Molecules (Basel, Switzerland) Switzerland), 2022-12, Vol.27 (24), p.8661 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c560t-2e170be3f27b32e86f043ec1cd23600a8a6b32bc0b1dec9bb48b14870c3540003 |
---|---|
cites | cdi_FETCH-LOGICAL-c560t-2e170be3f27b32e86f043ec1cd23600a8a6b32bc0b1dec9bb48b14870c3540003 |
container_end_page | |
container_issue | 24 |
container_start_page | 8661 |
container_title | Molecules (Basel, Switzerland) |
container_volume | 27 |
creator | Wu, Annan Zhang, Jie Li, Quanhong Liao, Xiaojun Wang, Chunyu Zhao, Jing |
description | (1) Background: (-)-Epigallocatechin-3-gallate (EGCG) has been reported to improve mitochondrial function in cell models, while the underlying mechanism is not clear. Cyclophilin D (CypD) is a key protein that regulates mitochondrial permeability transition pore (mPTP) opening. (2) Methods: In this study, we found that EGCG directly binds to CypD and this interaction was investigated by surface plasmon resonance (SPR), nuclear magnetic resonance (NMR) and molecular dynamic (MD) simulation. (3) Results: SPR showed an affinity of 2.7 × 10
M. The binding sites of EGCG on CypD were mapped to three regions by 2D NMR titration, which are Region 1 (E23-V29), Region 2 (T89-G104) and Region 3 (G124-I133). Molecular docking showed binding interface consistent with 2D NMR titration. MD simulations revealed that at least two conformations of EGCG-CypD complex exist, one with E23, D27, L90 and V93 as the most contributed residues and E23, L5 and I133 for the other. The major driven force for EGCG-CypD binding are Van der Waals and electrostatic interactions. (4) Conclusions: These results provide the structural basis for EGCG-CypD interaction, which might be a potential mechanism of how EGCG protects mitochondrial functions. |
doi_str_mv | 10.3390/molecules27248661 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_961fff30615846a181718007ccd0ebd0</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A745960953</galeid><doaj_id>oai_doaj_org_article_961fff30615846a181718007ccd0ebd0</doaj_id><sourcerecordid>A745960953</sourcerecordid><originalsourceid>FETCH-LOGICAL-c560t-2e170be3f27b32e86f043ec1cd23600a8a6b32bc0b1dec9bb48b14870c3540003</originalsourceid><addsrcrecordid>eNptkk1v1DAQhiMEoqXwA7igSFzaQ8o4_gwHpGVboFIreoCz5TjOrleOvdgJ0v77OmwpXUA-2DN-38ea8RTFawTnGDfwbgjO6MmZVPOaCMbQk-IYkRoqDKR5-uh8VLxIaQNQI4Lo8-IIM0o5b-hxEU6rs-pya1fKuaDVaPTa-gpXc5yj8sJGo0e3Kz9a36VyudMubNfWWV9evC8X5W0YjR-tcuVNtipv01D2IZY3dgx6HXwX57vbmGV6tMG_LJ71yiXz6n4_Kb5_uvy2_FJdf_18tVxcV5oyGKvaIA6twX3NW1wbwXog2GikuxozACUUy_lWQ4s6o5u2JaJFRHDQmBIAwCfF1Z7bBbWR22gHFXcyKCt_JUJcSRVHq52RDUN932NgiArCFBKIIwHAte7AtN3M-rBnbad2MJ3OBUflDqCHN96u5Sr8lA0XVHCWAaf3gBh-TCaNcrBJm9xhb8KUZM2pQAAEoSx9-5d0E6boc6tmFeOsaQj9o8rfZKT1fcjv6hkqF5zQhkFDcVad_0eVV2cGq4M3vc35AwPaG3QMKUXTP9SIQM4TJ_-ZuOx587g5D47fI4bvAAz70jQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2756769945</pqid></control><display><type>article</type><title>(-)-Epigallocatechin-3-gallate Directly Binds Cyclophilin D: A Potential Mechanism for Mitochondrial Protection</title><source>PubMed Central (Open Access)</source><source>Publicly Available Content Database</source><creator>Wu, Annan ; Zhang, Jie ; Li, Quanhong ; Liao, Xiaojun ; Wang, Chunyu ; Zhao, Jing</creator><creatorcontrib>Wu, Annan ; Zhang, Jie ; Li, Quanhong ; Liao, Xiaojun ; Wang, Chunyu ; Zhao, Jing</creatorcontrib><description>(1) Background: (-)-Epigallocatechin-3-gallate (EGCG) has been reported to improve mitochondrial function in cell models, while the underlying mechanism is not clear. Cyclophilin D (CypD) is a key protein that regulates mitochondrial permeability transition pore (mPTP) opening. (2) Methods: In this study, we found that EGCG directly binds to CypD and this interaction was investigated by surface plasmon resonance (SPR), nuclear magnetic resonance (NMR) and molecular dynamic (MD) simulation. (3) Results: SPR showed an affinity of 2.7 × 10
M. The binding sites of EGCG on CypD were mapped to three regions by 2D NMR titration, which are Region 1 (E23-V29), Region 2 (T89-G104) and Region 3 (G124-I133). Molecular docking showed binding interface consistent with 2D NMR titration. MD simulations revealed that at least two conformations of EGCG-CypD complex exist, one with E23, D27, L90 and V93 as the most contributed residues and E23, L5 and I133 for the other. The major driven force for EGCG-CypD binding are Van der Waals and electrostatic interactions. (4) Conclusions: These results provide the structural basis for EGCG-CypD interaction, which might be a potential mechanism of how EGCG protects mitochondrial functions.</description><identifier>ISSN: 1420-3049</identifier><identifier>EISSN: 1420-3049</identifier><identifier>DOI: 10.3390/molecules27248661</identifier><identifier>PMID: 36557795</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Amino acids ; Analysis ; Binding sites ; Care and treatment ; Cell culture ; CypD ; Diagnosis ; EGCG ; Electrostatic properties ; Energy ; Epigallocatechin gallate ; Green tea ; Health aspects ; interaction ; Membrane permeability ; Mitochondria - metabolism ; Mitochondrial diseases ; Mitochondrial Membrane Transport Proteins - metabolism ; Mitochondrial permeability transition pore ; Molecular docking ; Molecular Docking Simulation ; Molecular dynamics ; mPTP ; NMR ; Nuclear magnetic resonance ; Nutritional aspects ; Oxidative phosphorylation ; Peptidyl-Prolyl Isomerase F - metabolism ; Permeability ; Proteins ; Resonance ; Sensors ; Simulation ; Software ; Statistical analysis ; Surface plasmon resonance ; Titration ; Variance analysis</subject><ispartof>Molecules (Basel, Switzerland), 2022-12, Vol.27 (24), p.8661</ispartof><rights>COPYRIGHT 2022 MDPI AG</rights><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 by the authors. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c560t-2e170be3f27b32e86f043ec1cd23600a8a6b32bc0b1dec9bb48b14870c3540003</citedby><cites>FETCH-LOGICAL-c560t-2e170be3f27b32e86f043ec1cd23600a8a6b32bc0b1dec9bb48b14870c3540003</cites><orcidid>0000-0002-9472-8072 ; 0000-0001-5681-6058 ; 0000-0001-6231-293X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2756769945/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2756769945?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36557795$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wu, Annan</creatorcontrib><creatorcontrib>Zhang, Jie</creatorcontrib><creatorcontrib>Li, Quanhong</creatorcontrib><creatorcontrib>Liao, Xiaojun</creatorcontrib><creatorcontrib>Wang, Chunyu</creatorcontrib><creatorcontrib>Zhao, Jing</creatorcontrib><title>(-)-Epigallocatechin-3-gallate Directly Binds Cyclophilin D: A Potential Mechanism for Mitochondrial Protection</title><title>Molecules (Basel, Switzerland)</title><addtitle>Molecules</addtitle><description>(1) Background: (-)-Epigallocatechin-3-gallate (EGCG) has been reported to improve mitochondrial function in cell models, while the underlying mechanism is not clear. Cyclophilin D (CypD) is a key protein that regulates mitochondrial permeability transition pore (mPTP) opening. (2) Methods: In this study, we found that EGCG directly binds to CypD and this interaction was investigated by surface plasmon resonance (SPR), nuclear magnetic resonance (NMR) and molecular dynamic (MD) simulation. (3) Results: SPR showed an affinity of 2.7 × 10
M. The binding sites of EGCG on CypD were mapped to three regions by 2D NMR titration, which are Region 1 (E23-V29), Region 2 (T89-G104) and Region 3 (G124-I133). Molecular docking showed binding interface consistent with 2D NMR titration. MD simulations revealed that at least two conformations of EGCG-CypD complex exist, one with E23, D27, L90 and V93 as the most contributed residues and E23, L5 and I133 for the other. The major driven force for EGCG-CypD binding are Van der Waals and electrostatic interactions. (4) Conclusions: These results provide the structural basis for EGCG-CypD interaction, which might be a potential mechanism of how EGCG protects mitochondrial functions.</description><subject>Amino acids</subject><subject>Analysis</subject><subject>Binding sites</subject><subject>Care and treatment</subject><subject>Cell culture</subject><subject>CypD</subject><subject>Diagnosis</subject><subject>EGCG</subject><subject>Electrostatic properties</subject><subject>Energy</subject><subject>Epigallocatechin gallate</subject><subject>Green tea</subject><subject>Health aspects</subject><subject>interaction</subject><subject>Membrane permeability</subject><subject>Mitochondria - metabolism</subject><subject>Mitochondrial diseases</subject><subject>Mitochondrial Membrane Transport Proteins - metabolism</subject><subject>Mitochondrial permeability transition pore</subject><subject>Molecular docking</subject><subject>Molecular Docking Simulation</subject><subject>Molecular dynamics</subject><subject>mPTP</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Nutritional aspects</subject><subject>Oxidative phosphorylation</subject><subject>Peptidyl-Prolyl Isomerase F - metabolism</subject><subject>Permeability</subject><subject>Proteins</subject><subject>Resonance</subject><subject>Sensors</subject><subject>Simulation</subject><subject>Software</subject><subject>Statistical analysis</subject><subject>Surface plasmon resonance</subject><subject>Titration</subject><subject>Variance analysis</subject><issn>1420-3049</issn><issn>1420-3049</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptkk1v1DAQhiMEoqXwA7igSFzaQ8o4_gwHpGVboFIreoCz5TjOrleOvdgJ0v77OmwpXUA-2DN-38ea8RTFawTnGDfwbgjO6MmZVPOaCMbQk-IYkRoqDKR5-uh8VLxIaQNQI4Lo8-IIM0o5b-hxEU6rs-pya1fKuaDVaPTa-gpXc5yj8sJGo0e3Kz9a36VyudMubNfWWV9evC8X5W0YjR-tcuVNtipv01D2IZY3dgx6HXwX57vbmGV6tMG_LJ71yiXz6n4_Kb5_uvy2_FJdf_18tVxcV5oyGKvaIA6twX3NW1wbwXog2GikuxozACUUy_lWQ4s6o5u2JaJFRHDQmBIAwCfF1Z7bBbWR22gHFXcyKCt_JUJcSRVHq52RDUN932NgiArCFBKIIwHAte7AtN3M-rBnbad2MJ3OBUflDqCHN96u5Sr8lA0XVHCWAaf3gBh-TCaNcrBJm9xhb8KUZM2pQAAEoSx9-5d0E6boc6tmFeOsaQj9o8rfZKT1fcjv6hkqF5zQhkFDcVad_0eVV2cGq4M3vc35AwPaG3QMKUXTP9SIQM4TJ_-ZuOx587g5D47fI4bvAAz70jQ</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>Wu, Annan</creator><creator>Zhang, Jie</creator><creator>Li, Quanhong</creator><creator>Liao, Xiaojun</creator><creator>Wang, Chunyu</creator><creator>Zhao, Jing</creator><general>MDPI AG</general><general>MDPI</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-9472-8072</orcidid><orcidid>https://orcid.org/0000-0001-5681-6058</orcidid><orcidid>https://orcid.org/0000-0001-6231-293X</orcidid></search><sort><creationdate>20221201</creationdate><title>(-)-Epigallocatechin-3-gallate Directly Binds Cyclophilin D: A Potential Mechanism for Mitochondrial Protection</title><author>Wu, Annan ; Zhang, Jie ; Li, Quanhong ; Liao, Xiaojun ; Wang, Chunyu ; Zhao, Jing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c560t-2e170be3f27b32e86f043ec1cd23600a8a6b32bc0b1dec9bb48b14870c3540003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Amino acids</topic><topic>Analysis</topic><topic>Binding sites</topic><topic>Care and treatment</topic><topic>Cell culture</topic><topic>CypD</topic><topic>Diagnosis</topic><topic>EGCG</topic><topic>Electrostatic properties</topic><topic>Energy</topic><topic>Epigallocatechin gallate</topic><topic>Green tea</topic><topic>Health aspects</topic><topic>interaction</topic><topic>Membrane permeability</topic><topic>Mitochondria - metabolism</topic><topic>Mitochondrial diseases</topic><topic>Mitochondrial Membrane Transport Proteins - metabolism</topic><topic>Mitochondrial permeability transition pore</topic><topic>Molecular docking</topic><topic>Molecular Docking Simulation</topic><topic>Molecular dynamics</topic><topic>mPTP</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Nutritional aspects</topic><topic>Oxidative phosphorylation</topic><topic>Peptidyl-Prolyl Isomerase F - metabolism</topic><topic>Permeability</topic><topic>Proteins</topic><topic>Resonance</topic><topic>Sensors</topic><topic>Simulation</topic><topic>Software</topic><topic>Statistical analysis</topic><topic>Surface plasmon resonance</topic><topic>Titration</topic><topic>Variance analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Annan</creatorcontrib><creatorcontrib>Zhang, Jie</creatorcontrib><creatorcontrib>Li, Quanhong</creatorcontrib><creatorcontrib>Liao, Xiaojun</creatorcontrib><creatorcontrib>Wang, Chunyu</creatorcontrib><creatorcontrib>Zhao, Jing</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Molecules (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Annan</au><au>Zhang, Jie</au><au>Li, Quanhong</au><au>Liao, Xiaojun</au><au>Wang, Chunyu</au><au>Zhao, Jing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>(-)-Epigallocatechin-3-gallate Directly Binds Cyclophilin D: A Potential Mechanism for Mitochondrial Protection</atitle><jtitle>Molecules (Basel, Switzerland)</jtitle><addtitle>Molecules</addtitle><date>2022-12-01</date><risdate>2022</risdate><volume>27</volume><issue>24</issue><spage>8661</spage><pages>8661-</pages><issn>1420-3049</issn><eissn>1420-3049</eissn><abstract>(1) Background: (-)-Epigallocatechin-3-gallate (EGCG) has been reported to improve mitochondrial function in cell models, while the underlying mechanism is not clear. Cyclophilin D (CypD) is a key protein that regulates mitochondrial permeability transition pore (mPTP) opening. (2) Methods: In this study, we found that EGCG directly binds to CypD and this interaction was investigated by surface plasmon resonance (SPR), nuclear magnetic resonance (NMR) and molecular dynamic (MD) simulation. (3) Results: SPR showed an affinity of 2.7 × 10
M. The binding sites of EGCG on CypD were mapped to three regions by 2D NMR titration, which are Region 1 (E23-V29), Region 2 (T89-G104) and Region 3 (G124-I133). Molecular docking showed binding interface consistent with 2D NMR titration. MD simulations revealed that at least two conformations of EGCG-CypD complex exist, one with E23, D27, L90 and V93 as the most contributed residues and E23, L5 and I133 for the other. The major driven force for EGCG-CypD binding are Van der Waals and electrostatic interactions. (4) Conclusions: These results provide the structural basis for EGCG-CypD interaction, which might be a potential mechanism of how EGCG protects mitochondrial functions.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>36557795</pmid><doi>10.3390/molecules27248661</doi><orcidid>https://orcid.org/0000-0002-9472-8072</orcidid><orcidid>https://orcid.org/0000-0001-5681-6058</orcidid><orcidid>https://orcid.org/0000-0001-6231-293X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1420-3049 |
ispartof | Molecules (Basel, Switzerland), 2022-12, Vol.27 (24), p.8661 |
issn | 1420-3049 1420-3049 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_961fff30615846a181718007ccd0ebd0 |
source | PubMed Central (Open Access); Publicly Available Content Database |
subjects | Amino acids Analysis Binding sites Care and treatment Cell culture CypD Diagnosis EGCG Electrostatic properties Energy Epigallocatechin gallate Green tea Health aspects interaction Membrane permeability Mitochondria - metabolism Mitochondrial diseases Mitochondrial Membrane Transport Proteins - metabolism Mitochondrial permeability transition pore Molecular docking Molecular Docking Simulation Molecular dynamics mPTP NMR Nuclear magnetic resonance Nutritional aspects Oxidative phosphorylation Peptidyl-Prolyl Isomerase F - metabolism Permeability Proteins Resonance Sensors Simulation Software Statistical analysis Surface plasmon resonance Titration Variance analysis |
title | (-)-Epigallocatechin-3-gallate Directly Binds Cyclophilin D: A Potential Mechanism for Mitochondrial Protection |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T19%3A57%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=(-)-Epigallocatechin-3-gallate%20Directly%20Binds%20Cyclophilin%20D:%20A%20Potential%20Mechanism%20for%20Mitochondrial%20Protection&rft.jtitle=Molecules%20(Basel,%20Switzerland)&rft.au=Wu,%20Annan&rft.date=2022-12-01&rft.volume=27&rft.issue=24&rft.spage=8661&rft.pages=8661-&rft.issn=1420-3049&rft.eissn=1420-3049&rft_id=info:doi/10.3390/molecules27248661&rft_dat=%3Cgale_doaj_%3EA745960953%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c560t-2e170be3f27b32e86f043ec1cd23600a8a6b32bc0b1dec9bb48b14870c3540003%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2756769945&rft_id=info:pmid/36557795&rft_galeid=A745960953&rfr_iscdi=true |