Loading…

mtIF3 is locally translated in axons and regulates mitochondrial translation for axonal growth

The establishment and maintenance of functional neural connections relies on appropriate distribution and localization of mitochondria in neurites, as these organelles provide essential energy and metabolites. In particular, mitochondria are transported to axons and support local energy production t...

Full description

Saved in:
Bibliographic Details
Published in:BMC biology 2022-01, Vol.20 (1), p.12-12, Article 12
Main Authors: Lee, Soyeon, Park, Dongkeun, Lim, Chunghun, Kim, Jae-Ick, Min, Kyung-Tai
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c631t-1b16018509c931153bf5accf6279c2a7c4e2137dcbb970a1b69dafb331cd99873
cites cdi_FETCH-LOGICAL-c631t-1b16018509c931153bf5accf6279c2a7c4e2137dcbb970a1b69dafb331cd99873
container_end_page 12
container_issue 1
container_start_page 12
container_title BMC biology
container_volume 20
creator Lee, Soyeon
Park, Dongkeun
Lim, Chunghun
Kim, Jae-Ick
Min, Kyung-Tai
description The establishment and maintenance of functional neural connections relies on appropriate distribution and localization of mitochondria in neurites, as these organelles provide essential energy and metabolites. In particular, mitochondria are transported to axons and support local energy production to maintain energy-demanding neuronal processes including axon branching, growth, and regeneration. Additionally, local protein synthesis is required for structural and functional changes in axons, with nuclear-encoded mitochondrial mRNAs having been found localized in axons. However, it remains unclear whether these mRNAs are locally translated and whether the potential translated mitochondrial proteins are involved in the regulation of mitochondrial functions in axons. Here, we aim to further understand the purpose of such compartmentalization by focusing on the role of mitochondrial initiation factor 3 (mtIF3), whose nuclear-encoded transcripts have been shown to be present in axonal growth cones. We demonstrate that brain-derived neurotrophic factor (BDNF) induces local translation of mtIF3 mRNA in axonal growth cones. Subsequently, mtIF3 protein is translocated into axonal mitochondria and promotes mitochondrial translation as assessed by our newly developed bimolecular fluorescence complementation sensor for the assembly of mitochondrial ribosomes. We further show that BDNF-induced axonal growth requires mtIF3-dependent mitochondrial translation in distal axons. We describe a previously unknown function of mitochondrial initiation factor 3 (mtIF3) in axonal protein synthesis and development. These findings provide insight into the way neurons adaptively control mitochondrial physiology and axonal development via local mtIF3 translation.
doi_str_mv 10.1186/s12915-021-01215-w
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_9632e7d0080a406aa81e603bc08408cc</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A693695887</galeid><doaj_id>oai_doaj_org_article_9632e7d0080a406aa81e603bc08408cc</doaj_id><sourcerecordid>A693695887</sourcerecordid><originalsourceid>FETCH-LOGICAL-c631t-1b16018509c931153bf5accf6279c2a7c4e2137dcbb970a1b69dafb331cd99873</originalsourceid><addsrcrecordid>eNqNkk9v1DAQxSMEoqXwBTigSFzKIcVjJ3Z8QaoqCitVqsS_I9bEcbJeJXaxE7b99nh3y9JFHJAPtsa_90Yzeln2EsgZQM3fRqASqoJQKAjQ9Fo_yo5BlFAIQsTjB--j7FmMK0JoJQR7mh2xUkpeVtVx9n2cFpcstzEfvMZhuMungC4OOJk2ty7HW-9ijq7Ng-nnTTnmo528XnrXBovDnrfe5Z0PW0Uq98Gvp-Xz7EmHQzQv7u-T7Ovl-y8XH4ur6w-Li_OrQnMGUwENcAJ1RaSWDKBiTVeh1h2nQmqKQpeGAhOtbhopCELDZYtdwxjoVspasJNssfNtPa7UTbAjhjvl0aptwYdeYZisHoySnFEjWkJqgiXhiDUYTlijSV2SWuvk9W7ndTM3o2m1cWnE4cD08MfZper9T1WLkjIuk8HpvUHwP2YTJzXaqM0woDN-jopyqCnlFeMJff0XuvJzSPvbUJRIEJxVf6ge0wDWdT711RtTdZ76cVnV2x2c_YNKpzWj1d6Zzqb6geDNgSAxk7mdepxjVIvPn_6fvf52yNIdq4OPMZhuvzsgapNctUuuSslV2-SqdRK9erj1veR3VNkvb17nKQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2620917635</pqid></control><display><type>article</type><title>mtIF3 is locally translated in axons and regulates mitochondrial translation for axonal growth</title><source>Publicly Available Content (ProQuest)</source><source>PubMed Central</source><creator>Lee, Soyeon ; Park, Dongkeun ; Lim, Chunghun ; Kim, Jae-Ick ; Min, Kyung-Tai</creator><creatorcontrib>Lee, Soyeon ; Park, Dongkeun ; Lim, Chunghun ; Kim, Jae-Ick ; Min, Kyung-Tai</creatorcontrib><description>The establishment and maintenance of functional neural connections relies on appropriate distribution and localization of mitochondria in neurites, as these organelles provide essential energy and metabolites. In particular, mitochondria are transported to axons and support local energy production to maintain energy-demanding neuronal processes including axon branching, growth, and regeneration. Additionally, local protein synthesis is required for structural and functional changes in axons, with nuclear-encoded mitochondrial mRNAs having been found localized in axons. However, it remains unclear whether these mRNAs are locally translated and whether the potential translated mitochondrial proteins are involved in the regulation of mitochondrial functions in axons. Here, we aim to further understand the purpose of such compartmentalization by focusing on the role of mitochondrial initiation factor 3 (mtIF3), whose nuclear-encoded transcripts have been shown to be present in axonal growth cones. We demonstrate that brain-derived neurotrophic factor (BDNF) induces local translation of mtIF3 mRNA in axonal growth cones. Subsequently, mtIF3 protein is translocated into axonal mitochondria and promotes mitochondrial translation as assessed by our newly developed bimolecular fluorescence complementation sensor for the assembly of mitochondrial ribosomes. We further show that BDNF-induced axonal growth requires mtIF3-dependent mitochondrial translation in distal axons. We describe a previously unknown function of mitochondrial initiation factor 3 (mtIF3) in axonal protein synthesis and development. These findings provide insight into the way neurons adaptively control mitochondrial physiology and axonal development via local mtIF3 translation.</description><identifier>ISSN: 1741-7007</identifier><identifier>EISSN: 1741-7007</identifier><identifier>DOI: 10.1186/s12915-021-01215-w</identifier><identifier>PMID: 34996455</identifier><language>eng</language><publisher>England: BioMed Central Ltd</publisher><subject>Amino acids ; Analysis ; Axon development ; Axonal transport ; Axonogenesis ; Axons ; Bimolecular fluorescence complementation ; Brain-derived neurotrophic factor ; Brain-Derived Neurotrophic Factor - metabolism ; Cones ; Fluorescence ; Fluorescence spectroscopy ; Genetic translation ; Growth cones ; Local translation ; Localization ; Metabolites ; Methods ; Mitochondria ; Mitochondrial translation ; Neurons - physiology ; Neurophysiology ; Organelles ; Peptide Initiation Factors - metabolism ; Physiology ; Protein Biosynthesis ; Protein synthesis ; Proteins ; Regeneration ; Ribosomes ; Structure-function relationships ; Translation</subject><ispartof>BMC biology, 2022-01, Vol.20 (1), p.12-12, Article 12</ispartof><rights>2022. The Author(s).</rights><rights>COPYRIGHT 2022 BioMed Central Ltd.</rights><rights>2022. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>The Author(s) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c631t-1b16018509c931153bf5accf6279c2a7c4e2137dcbb970a1b69dafb331cd99873</citedby><cites>FETCH-LOGICAL-c631t-1b16018509c931153bf5accf6279c2a7c4e2137dcbb970a1b69dafb331cd99873</cites><orcidid>0000-0001-9705-0394</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2620917635/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2620917635?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,74998</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34996455$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lee, Soyeon</creatorcontrib><creatorcontrib>Park, Dongkeun</creatorcontrib><creatorcontrib>Lim, Chunghun</creatorcontrib><creatorcontrib>Kim, Jae-Ick</creatorcontrib><creatorcontrib>Min, Kyung-Tai</creatorcontrib><title>mtIF3 is locally translated in axons and regulates mitochondrial translation for axonal growth</title><title>BMC biology</title><addtitle>BMC Biol</addtitle><description>The establishment and maintenance of functional neural connections relies on appropriate distribution and localization of mitochondria in neurites, as these organelles provide essential energy and metabolites. In particular, mitochondria are transported to axons and support local energy production to maintain energy-demanding neuronal processes including axon branching, growth, and regeneration. Additionally, local protein synthesis is required for structural and functional changes in axons, with nuclear-encoded mitochondrial mRNAs having been found localized in axons. However, it remains unclear whether these mRNAs are locally translated and whether the potential translated mitochondrial proteins are involved in the regulation of mitochondrial functions in axons. Here, we aim to further understand the purpose of such compartmentalization by focusing on the role of mitochondrial initiation factor 3 (mtIF3), whose nuclear-encoded transcripts have been shown to be present in axonal growth cones. We demonstrate that brain-derived neurotrophic factor (BDNF) induces local translation of mtIF3 mRNA in axonal growth cones. Subsequently, mtIF3 protein is translocated into axonal mitochondria and promotes mitochondrial translation as assessed by our newly developed bimolecular fluorescence complementation sensor for the assembly of mitochondrial ribosomes. We further show that BDNF-induced axonal growth requires mtIF3-dependent mitochondrial translation in distal axons. We describe a previously unknown function of mitochondrial initiation factor 3 (mtIF3) in axonal protein synthesis and development. These findings provide insight into the way neurons adaptively control mitochondrial physiology and axonal development via local mtIF3 translation.</description><subject>Amino acids</subject><subject>Analysis</subject><subject>Axon development</subject><subject>Axonal transport</subject><subject>Axonogenesis</subject><subject>Axons</subject><subject>Bimolecular fluorescence complementation</subject><subject>Brain-derived neurotrophic factor</subject><subject>Brain-Derived Neurotrophic Factor - metabolism</subject><subject>Cones</subject><subject>Fluorescence</subject><subject>Fluorescence spectroscopy</subject><subject>Genetic translation</subject><subject>Growth cones</subject><subject>Local translation</subject><subject>Localization</subject><subject>Metabolites</subject><subject>Methods</subject><subject>Mitochondria</subject><subject>Mitochondrial translation</subject><subject>Neurons - physiology</subject><subject>Neurophysiology</subject><subject>Organelles</subject><subject>Peptide Initiation Factors - metabolism</subject><subject>Physiology</subject><subject>Protein Biosynthesis</subject><subject>Protein synthesis</subject><subject>Proteins</subject><subject>Regeneration</subject><subject>Ribosomes</subject><subject>Structure-function relationships</subject><subject>Translation</subject><issn>1741-7007</issn><issn>1741-7007</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqNkk9v1DAQxSMEoqXwBTigSFzKIcVjJ3Z8QaoqCitVqsS_I9bEcbJeJXaxE7b99nh3y9JFHJAPtsa_90Yzeln2EsgZQM3fRqASqoJQKAjQ9Fo_yo5BlFAIQsTjB--j7FmMK0JoJQR7mh2xUkpeVtVx9n2cFpcstzEfvMZhuMungC4OOJk2ty7HW-9ijq7Ng-nnTTnmo528XnrXBovDnrfe5Z0PW0Uq98Gvp-Xz7EmHQzQv7u-T7Ovl-y8XH4ur6w-Li_OrQnMGUwENcAJ1RaSWDKBiTVeh1h2nQmqKQpeGAhOtbhopCELDZYtdwxjoVspasJNssfNtPa7UTbAjhjvl0aptwYdeYZisHoySnFEjWkJqgiXhiDUYTlijSV2SWuvk9W7ndTM3o2m1cWnE4cD08MfZper9T1WLkjIuk8HpvUHwP2YTJzXaqM0woDN-jopyqCnlFeMJff0XuvJzSPvbUJRIEJxVf6ge0wDWdT711RtTdZ76cVnV2x2c_YNKpzWj1d6Zzqb6geDNgSAxk7mdepxjVIvPn_6fvf52yNIdq4OPMZhuvzsgapNctUuuSslV2-SqdRK9erj1veR3VNkvb17nKQ</recordid><startdate>20220107</startdate><enddate>20220107</enddate><creator>Lee, Soyeon</creator><creator>Park, Dongkeun</creator><creator>Lim, Chunghun</creator><creator>Kim, Jae-Ick</creator><creator>Min, Kyung-Tai</creator><general>BioMed Central Ltd</general><general>BioMed Central</general><general>BMC</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>4U-</scope><scope>7QG</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PADUT</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-9705-0394</orcidid></search><sort><creationdate>20220107</creationdate><title>mtIF3 is locally translated in axons and regulates mitochondrial translation for axonal growth</title><author>Lee, Soyeon ; Park, Dongkeun ; Lim, Chunghun ; Kim, Jae-Ick ; Min, Kyung-Tai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c631t-1b16018509c931153bf5accf6279c2a7c4e2137dcbb970a1b69dafb331cd99873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Amino acids</topic><topic>Analysis</topic><topic>Axon development</topic><topic>Axonal transport</topic><topic>Axonogenesis</topic><topic>Axons</topic><topic>Bimolecular fluorescence complementation</topic><topic>Brain-derived neurotrophic factor</topic><topic>Brain-Derived Neurotrophic Factor - metabolism</topic><topic>Cones</topic><topic>Fluorescence</topic><topic>Fluorescence spectroscopy</topic><topic>Genetic translation</topic><topic>Growth cones</topic><topic>Local translation</topic><topic>Localization</topic><topic>Metabolites</topic><topic>Methods</topic><topic>Mitochondria</topic><topic>Mitochondrial translation</topic><topic>Neurons - physiology</topic><topic>Neurophysiology</topic><topic>Organelles</topic><topic>Peptide Initiation Factors - metabolism</topic><topic>Physiology</topic><topic>Protein Biosynthesis</topic><topic>Protein synthesis</topic><topic>Proteins</topic><topic>Regeneration</topic><topic>Ribosomes</topic><topic>Structure-function relationships</topic><topic>Translation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Soyeon</creatorcontrib><creatorcontrib>Park, Dongkeun</creatorcontrib><creatorcontrib>Lim, Chunghun</creatorcontrib><creatorcontrib>Kim, Jae-Ick</creatorcontrib><creatorcontrib>Min, Kyung-Tai</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>University Readers</collection><collection>Animal Behavior Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest research library</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Research Library China</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>BMC biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Soyeon</au><au>Park, Dongkeun</au><au>Lim, Chunghun</au><au>Kim, Jae-Ick</au><au>Min, Kyung-Tai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>mtIF3 is locally translated in axons and regulates mitochondrial translation for axonal growth</atitle><jtitle>BMC biology</jtitle><addtitle>BMC Biol</addtitle><date>2022-01-07</date><risdate>2022</risdate><volume>20</volume><issue>1</issue><spage>12</spage><epage>12</epage><pages>12-12</pages><artnum>12</artnum><issn>1741-7007</issn><eissn>1741-7007</eissn><abstract>The establishment and maintenance of functional neural connections relies on appropriate distribution and localization of mitochondria in neurites, as these organelles provide essential energy and metabolites. In particular, mitochondria are transported to axons and support local energy production to maintain energy-demanding neuronal processes including axon branching, growth, and regeneration. Additionally, local protein synthesis is required for structural and functional changes in axons, with nuclear-encoded mitochondrial mRNAs having been found localized in axons. However, it remains unclear whether these mRNAs are locally translated and whether the potential translated mitochondrial proteins are involved in the regulation of mitochondrial functions in axons. Here, we aim to further understand the purpose of such compartmentalization by focusing on the role of mitochondrial initiation factor 3 (mtIF3), whose nuclear-encoded transcripts have been shown to be present in axonal growth cones. We demonstrate that brain-derived neurotrophic factor (BDNF) induces local translation of mtIF3 mRNA in axonal growth cones. Subsequently, mtIF3 protein is translocated into axonal mitochondria and promotes mitochondrial translation as assessed by our newly developed bimolecular fluorescence complementation sensor for the assembly of mitochondrial ribosomes. We further show that BDNF-induced axonal growth requires mtIF3-dependent mitochondrial translation in distal axons. We describe a previously unknown function of mitochondrial initiation factor 3 (mtIF3) in axonal protein synthesis and development. These findings provide insight into the way neurons adaptively control mitochondrial physiology and axonal development via local mtIF3 translation.</abstract><cop>England</cop><pub>BioMed Central Ltd</pub><pmid>34996455</pmid><doi>10.1186/s12915-021-01215-w</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-9705-0394</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1741-7007
ispartof BMC biology, 2022-01, Vol.20 (1), p.12-12, Article 12
issn 1741-7007
1741-7007
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_9632e7d0080a406aa81e603bc08408cc
source Publicly Available Content (ProQuest); PubMed Central
subjects Amino acids
Analysis
Axon development
Axonal transport
Axonogenesis
Axons
Bimolecular fluorescence complementation
Brain-derived neurotrophic factor
Brain-Derived Neurotrophic Factor - metabolism
Cones
Fluorescence
Fluorescence spectroscopy
Genetic translation
Growth cones
Local translation
Localization
Metabolites
Methods
Mitochondria
Mitochondrial translation
Neurons - physiology
Neurophysiology
Organelles
Peptide Initiation Factors - metabolism
Physiology
Protein Biosynthesis
Protein synthesis
Proteins
Regeneration
Ribosomes
Structure-function relationships
Translation
title mtIF3 is locally translated in axons and regulates mitochondrial translation for axonal growth
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T03%3A48%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=mtIF3%20is%20locally%20translated%20in%20axons%20and%20regulates%20mitochondrial%20translation%20for%20axonal%20growth&rft.jtitle=BMC%20biology&rft.au=Lee,%20Soyeon&rft.date=2022-01-07&rft.volume=20&rft.issue=1&rft.spage=12&rft.epage=12&rft.pages=12-12&rft.artnum=12&rft.issn=1741-7007&rft.eissn=1741-7007&rft_id=info:doi/10.1186/s12915-021-01215-w&rft_dat=%3Cgale_doaj_%3EA693695887%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c631t-1b16018509c931153bf5accf6279c2a7c4e2137dcbb970a1b69dafb331cd99873%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2620917635&rft_id=info:pmid/34996455&rft_galeid=A693695887&rfr_iscdi=true