Loading…
Ubiquitinated Hepatitis D Antigen-Loaded Microvesicles Induce a Potent Specific Cellular Immune Response to Inhibit HDV Replication in Vivo
Hepatitis D is the most severe form of human viral hepatitis and currently lacks an efficient therapy. Dendritic cell-derived exosomes (Dexs) have been found to induce immune responses capable of eliminating viruses. However, the therapeutic potential of antigen-loaded exosomes in hepatitis D is sti...
Saved in:
Published in: | Microbiology spectrum 2021-12, Vol.9 (3), p.e0102421-e0102421 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Hepatitis D is the most severe form of human viral hepatitis and currently lacks an efficient therapy. Dendritic cell-derived exosomes (Dexs) have been found to induce immune responses capable of eliminating viruses. However, the therapeutic potential of antigen-loaded exosomes in hepatitis D is still unknown. Recently, we designed exosomes loaded with ubiquitinated hepatitis delta virus (HDV) small delta antigen (Ub-S-HDAg) and then treated mice bearing replicating HDV with these exosomes to explore their antiviral effect and mechanism. Mature dendritic cell-derived exosomes (mDexs) were loaded with Ub-S-HDAg and their antivirus function was evaluated in mice with HDV viremia. Furthermore, the proportion of CD8
cells, the ratio of Th1/Th2 cells, the postimmunization levels of cytokines were explored, and the Janus kinases (JAK)/signal transducer and activator of transcription (STAT) pathway was evaluated with a JAK2 inhibitor AG490. In Ub-S-HDAg-Dexs group, the HDV RNA viral load was significantly decreased compared with other groups by CD8
cell enrichment and an increase Th1/Th2 cell ratio. Furthermore, lymphocyte infiltration was increased, while the HDAg level was decreased in mouse liver tissue. However, there were no significant differences in HBV surface antigen (HBsAg), alanine aminotransferase (ALT), or aspartate aminotransferase (AST) levels among the groups. Moreover, p-JAK2, p-STAT1, p-STAT4, STAT1, and STAT4 expression was increased in Ub-S-HDAg-Dexs group. In conclusion, Ub-S-HDAg-Dexs might be a potential immunotherapeutic agent for eradicating HDV by inducing specific cellular immune response via the JAK/STAT pathway.
Hepatitis D is the most severe viral hepatitis with accelerating the process of liver cirrhosis and increasing the risk of hepatocellular carcinoma. However, there are no effective antiviral drugs. Exosomes derived from mature dendritic cells are used not only as immunomodulators, but also as biological carriers to deliver antigens to induce robust immune response. Based on these properties, exosomes could be used as a biological immunotherapy by enhancing adaptive immune response to inhibit hepatitis D virus replication. Our research may provide a new therapeutic strategy to eradicate HDV in the future. |
---|---|
ISSN: | 2165-0497 2165-0497 |
DOI: | 10.1128/Spectrum.01024-21 |