Loading…

Algebraic graph-assisted bidirectional transformers for molecular property prediction

The ability of molecular property prediction is of great significance to drug discovery, human health, and environmental protection. Despite considerable efforts, quantitative prediction of various molecular properties remains a challenge. Although some machine learning models, such as bidirectional...

Full description

Saved in:
Bibliographic Details
Published in:Nature communications 2021-06, Vol.12 (1), p.3521-9, Article 3521
Main Authors: Chen, Dong, Gao, Kaifu, Nguyen, Duc Duy, Chen, Xin, Jiang, Yi, Wei, Guo-Wei, Pan, Feng
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c540t-6fd86ee2b56696c0efdaffdccf5b0949256f173ac675d738ff6d2e1a4cbcecd3
cites cdi_FETCH-LOGICAL-c540t-6fd86ee2b56696c0efdaffdccf5b0949256f173ac675d738ff6d2e1a4cbcecd3
container_end_page 9
container_issue 1
container_start_page 3521
container_title Nature communications
container_volume 12
creator Chen, Dong
Gao, Kaifu
Nguyen, Duc Duy
Chen, Xin
Jiang, Yi
Wei, Guo-Wei
Pan, Feng
description The ability of molecular property prediction is of great significance to drug discovery, human health, and environmental protection. Despite considerable efforts, quantitative prediction of various molecular properties remains a challenge. Although some machine learning models, such as bidirectional encoder from transformer, can incorporate massive unlabeled molecular data into molecular representations via a self-supervised learning strategy, it neglects three-dimensional (3D) stereochemical information. Algebraic graph, specifically, element-specific multiscale weighted colored algebraic graph, embeds complementary 3D molecular information into graph invariants. We propose an algebraic graph-assisted bidirectional transformer (AGBT) framework by fusing representations generated by algebraic graph and bidirectional transformer, as well as a variety of machine learning algorithms, including decision trees, multitask learning, and deep neural networks. We validate the proposed AGBT framework on eight molecular datasets, involving quantitative toxicity, physical chemistry, and physiology datasets. Extensive numerical experiments have shown that AGBT is a state-of-the-art framework for molecular property prediction. Despite considerable efforts, quantitative prediction of various molecular properties remains a challenge. Here, the authors propose an algebraic graph-assisted bidirectional transformer, which can incorporate massive unlabeled molecular data into molecular representations via a self-supervised learning strategy and assisted with 3D stereochemical information from graphs.
doi_str_mv 10.1038/s41467-021-23720-w
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_964aeff00e454f149f1ac6578c7f6305</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_964aeff00e454f149f1ac6578c7f6305</doaj_id><sourcerecordid>2539746726</sourcerecordid><originalsourceid>FETCH-LOGICAL-c540t-6fd86ee2b56696c0efdaffdccf5b0949256f173ac675d738ff6d2e1a4cbcecd3</originalsourceid><addsrcrecordid>eNp9kctu1TAQhi0EolXpC7BAkVgHfHeyQaoqLpUqsSlry7HHqY9y4jDOoerbY05KaTd4MyPPP9-M_RPyltEPjIruY5FMatNSzlouDKft3QtyyqlkLTNcvHySn5DzUna0HtGzTsrX5ERIxrgx5pT8uJhGGNAl34zoltvWlZLKCqEZUkgIfk15dlOzoptLzLgHLE2NzT5P4A-Tw2bBvACu9zWBkI4Nb8ir6KYC5w_xjNx8-Xxz-a29_v716vLiuvVK0rXVMXQagA9K6157CjG4GIP3UQ20lz1XOjIjnNdGBSO6GHXgwJz0gwcfxBm52rAhu51dMO0d3tvskj1eZBytwzX5CWyvpYMYKQWpZGSyj6xilem8iVpQVVmfNtZyGPYQPMz1ydMz6PPKnG7tmH_ZjtU9j4D3DwDMPw9QVrvLB6x_VyxXojfVLa6rim8qj7kUhPg4gVH7x1i7GWursfZorL2rTe-e7vbY8tfGKhCboNTSPAL-m_0f7G8Li7JV</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2539746726</pqid></control><display><type>article</type><title>Algebraic graph-assisted bidirectional transformers for molecular property prediction</title><source>Publicly Available Content Database</source><source>Nature</source><source>PubMed Central</source><source>Coronavirus Research Database</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Chen, Dong ; Gao, Kaifu ; Nguyen, Duc Duy ; Chen, Xin ; Jiang, Yi ; Wei, Guo-Wei ; Pan, Feng</creator><creatorcontrib>Chen, Dong ; Gao, Kaifu ; Nguyen, Duc Duy ; Chen, Xin ; Jiang, Yi ; Wei, Guo-Wei ; Pan, Feng</creatorcontrib><description>The ability of molecular property prediction is of great significance to drug discovery, human health, and environmental protection. Despite considerable efforts, quantitative prediction of various molecular properties remains a challenge. Although some machine learning models, such as bidirectional encoder from transformer, can incorporate massive unlabeled molecular data into molecular representations via a self-supervised learning strategy, it neglects three-dimensional (3D) stereochemical information. Algebraic graph, specifically, element-specific multiscale weighted colored algebraic graph, embeds complementary 3D molecular information into graph invariants. We propose an algebraic graph-assisted bidirectional transformer (AGBT) framework by fusing representations generated by algebraic graph and bidirectional transformer, as well as a variety of machine learning algorithms, including decision trees, multitask learning, and deep neural networks. We validate the proposed AGBT framework on eight molecular datasets, involving quantitative toxicity, physical chemistry, and physiology datasets. Extensive numerical experiments have shown that AGBT is a state-of-the-art framework for molecular property prediction. Despite considerable efforts, quantitative prediction of various molecular properties remains a challenge. Here, the authors propose an algebraic graph-assisted bidirectional transformer, which can incorporate massive unlabeled molecular data into molecular representations via a self-supervised learning strategy and assisted with 3D stereochemical information from graphs.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/s41467-021-23720-w</identifier><identifier>PMID: 34112777</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/114/1305 ; 631/92/606 ; 631/92/96 ; Algebra ; Algorithms ; Artificial neural networks ; Blood-Brain Barrier - drug effects ; Coders ; Computer Simulation ; Databases, Chemical ; Datasets ; Decision trees ; Drug Discovery - methods ; Drug-Related Side Effects and Adverse Reactions ; Environmental protection ; Graphical representations ; Humanities and Social Sciences ; Hydrophobic and Hydrophilic Interactions ; Learning algorithms ; Machine Learning ; Molecular Conformation ; Molecular properties ; multidisciplinary ; Neural networks ; Neural Networks, Computer ; Pharmaceutical Preparations - chemistry ; Physical chemistry ; Predictions ; Science ; Science (multidisciplinary) ; Toxicity ; Transformers</subject><ispartof>Nature communications, 2021-06, Vol.12 (1), p.3521-9, Article 3521</ispartof><rights>The Author(s) 2021</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c540t-6fd86ee2b56696c0efdaffdccf5b0949256f173ac675d738ff6d2e1a4cbcecd3</citedby><cites>FETCH-LOGICAL-c540t-6fd86ee2b56696c0efdaffdccf5b0949256f173ac675d738ff6d2e1a4cbcecd3</cites><orcidid>0000-0002-8216-1339 ; 0000-0001-5397-0447 ; 0000-0001-8132-5998</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2539746726/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2539746726?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,38516,43895,44590,53791,53793,74412,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34112777$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Dong</creatorcontrib><creatorcontrib>Gao, Kaifu</creatorcontrib><creatorcontrib>Nguyen, Duc Duy</creatorcontrib><creatorcontrib>Chen, Xin</creatorcontrib><creatorcontrib>Jiang, Yi</creatorcontrib><creatorcontrib>Wei, Guo-Wei</creatorcontrib><creatorcontrib>Pan, Feng</creatorcontrib><title>Algebraic graph-assisted bidirectional transformers for molecular property prediction</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>Nat Commun</addtitle><description>The ability of molecular property prediction is of great significance to drug discovery, human health, and environmental protection. Despite considerable efforts, quantitative prediction of various molecular properties remains a challenge. Although some machine learning models, such as bidirectional encoder from transformer, can incorporate massive unlabeled molecular data into molecular representations via a self-supervised learning strategy, it neglects three-dimensional (3D) stereochemical information. Algebraic graph, specifically, element-specific multiscale weighted colored algebraic graph, embeds complementary 3D molecular information into graph invariants. We propose an algebraic graph-assisted bidirectional transformer (AGBT) framework by fusing representations generated by algebraic graph and bidirectional transformer, as well as a variety of machine learning algorithms, including decision trees, multitask learning, and deep neural networks. We validate the proposed AGBT framework on eight molecular datasets, involving quantitative toxicity, physical chemistry, and physiology datasets. Extensive numerical experiments have shown that AGBT is a state-of-the-art framework for molecular property prediction. Despite considerable efforts, quantitative prediction of various molecular properties remains a challenge. Here, the authors propose an algebraic graph-assisted bidirectional transformer, which can incorporate massive unlabeled molecular data into molecular representations via a self-supervised learning strategy and assisted with 3D stereochemical information from graphs.</description><subject>631/114/1305</subject><subject>631/92/606</subject><subject>631/92/96</subject><subject>Algebra</subject><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Blood-Brain Barrier - drug effects</subject><subject>Coders</subject><subject>Computer Simulation</subject><subject>Databases, Chemical</subject><subject>Datasets</subject><subject>Decision trees</subject><subject>Drug Discovery - methods</subject><subject>Drug-Related Side Effects and Adverse Reactions</subject><subject>Environmental protection</subject><subject>Graphical representations</subject><subject>Humanities and Social Sciences</subject><subject>Hydrophobic and Hydrophilic Interactions</subject><subject>Learning algorithms</subject><subject>Machine Learning</subject><subject>Molecular Conformation</subject><subject>Molecular properties</subject><subject>multidisciplinary</subject><subject>Neural networks</subject><subject>Neural Networks, Computer</subject><subject>Pharmaceutical Preparations - chemistry</subject><subject>Physical chemistry</subject><subject>Predictions</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Toxicity</subject><subject>Transformers</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>COVID</sourceid><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kctu1TAQhi0EolXpC7BAkVgHfHeyQaoqLpUqsSlry7HHqY9y4jDOoerbY05KaTd4MyPPP9-M_RPyltEPjIruY5FMatNSzlouDKft3QtyyqlkLTNcvHySn5DzUna0HtGzTsrX5ERIxrgx5pT8uJhGGNAl34zoltvWlZLKCqEZUkgIfk15dlOzoptLzLgHLE2NzT5P4A-Tw2bBvACu9zWBkI4Nb8ir6KYC5w_xjNx8-Xxz-a29_v716vLiuvVK0rXVMXQagA9K6157CjG4GIP3UQ20lz1XOjIjnNdGBSO6GHXgwJz0gwcfxBm52rAhu51dMO0d3tvskj1eZBytwzX5CWyvpYMYKQWpZGSyj6xilem8iVpQVVmfNtZyGPYQPMz1ydMz6PPKnG7tmH_ZjtU9j4D3DwDMPw9QVrvLB6x_VyxXojfVLa6rim8qj7kUhPg4gVH7x1i7GWursfZorL2rTe-e7vbY8tfGKhCboNTSPAL-m_0f7G8Li7JV</recordid><startdate>20210610</startdate><enddate>20210610</enddate><creator>Chen, Dong</creator><creator>Gao, Kaifu</creator><creator>Nguyen, Duc Duy</creator><creator>Chen, Xin</creator><creator>Jiang, Yi</creator><creator>Wei, Guo-Wei</creator><creator>Pan, Feng</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>COVID</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>SOI</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-8216-1339</orcidid><orcidid>https://orcid.org/0000-0001-5397-0447</orcidid><orcidid>https://orcid.org/0000-0001-8132-5998</orcidid></search><sort><creationdate>20210610</creationdate><title>Algebraic graph-assisted bidirectional transformers for molecular property prediction</title><author>Chen, Dong ; Gao, Kaifu ; Nguyen, Duc Duy ; Chen, Xin ; Jiang, Yi ; Wei, Guo-Wei ; Pan, Feng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c540t-6fd86ee2b56696c0efdaffdccf5b0949256f173ac675d738ff6d2e1a4cbcecd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>631/114/1305</topic><topic>631/92/606</topic><topic>631/92/96</topic><topic>Algebra</topic><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Blood-Brain Barrier - drug effects</topic><topic>Coders</topic><topic>Computer Simulation</topic><topic>Databases, Chemical</topic><topic>Datasets</topic><topic>Decision trees</topic><topic>Drug Discovery - methods</topic><topic>Drug-Related Side Effects and Adverse Reactions</topic><topic>Environmental protection</topic><topic>Graphical representations</topic><topic>Humanities and Social Sciences</topic><topic>Hydrophobic and Hydrophilic Interactions</topic><topic>Learning algorithms</topic><topic>Machine Learning</topic><topic>Molecular Conformation</topic><topic>Molecular properties</topic><topic>multidisciplinary</topic><topic>Neural networks</topic><topic>Neural Networks, Computer</topic><topic>Pharmaceutical Preparations - chemistry</topic><topic>Physical chemistry</topic><topic>Predictions</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Toxicity</topic><topic>Transformers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Dong</creatorcontrib><creatorcontrib>Gao, Kaifu</creatorcontrib><creatorcontrib>Nguyen, Duc Duy</creatorcontrib><creatorcontrib>Chen, Xin</creatorcontrib><creatorcontrib>Jiang, Yi</creatorcontrib><creatorcontrib>Wei, Guo-Wei</creatorcontrib><creatorcontrib>Pan, Feng</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>ProQuest_Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Biological Science Journals</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Dong</au><au>Gao, Kaifu</au><au>Nguyen, Duc Duy</au><au>Chen, Xin</au><au>Jiang, Yi</au><au>Wei, Guo-Wei</au><au>Pan, Feng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Algebraic graph-assisted bidirectional transformers for molecular property prediction</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><addtitle>Nat Commun</addtitle><date>2021-06-10</date><risdate>2021</risdate><volume>12</volume><issue>1</issue><spage>3521</spage><epage>9</epage><pages>3521-9</pages><artnum>3521</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>The ability of molecular property prediction is of great significance to drug discovery, human health, and environmental protection. Despite considerable efforts, quantitative prediction of various molecular properties remains a challenge. Although some machine learning models, such as bidirectional encoder from transformer, can incorporate massive unlabeled molecular data into molecular representations via a self-supervised learning strategy, it neglects three-dimensional (3D) stereochemical information. Algebraic graph, specifically, element-specific multiscale weighted colored algebraic graph, embeds complementary 3D molecular information into graph invariants. We propose an algebraic graph-assisted bidirectional transformer (AGBT) framework by fusing representations generated by algebraic graph and bidirectional transformer, as well as a variety of machine learning algorithms, including decision trees, multitask learning, and deep neural networks. We validate the proposed AGBT framework on eight molecular datasets, involving quantitative toxicity, physical chemistry, and physiology datasets. Extensive numerical experiments have shown that AGBT is a state-of-the-art framework for molecular property prediction. Despite considerable efforts, quantitative prediction of various molecular properties remains a challenge. Here, the authors propose an algebraic graph-assisted bidirectional transformer, which can incorporate massive unlabeled molecular data into molecular representations via a self-supervised learning strategy and assisted with 3D stereochemical information from graphs.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>34112777</pmid><doi>10.1038/s41467-021-23720-w</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-8216-1339</orcidid><orcidid>https://orcid.org/0000-0001-5397-0447</orcidid><orcidid>https://orcid.org/0000-0001-8132-5998</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2041-1723
ispartof Nature communications, 2021-06, Vol.12 (1), p.3521-9, Article 3521
issn 2041-1723
2041-1723
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_964aeff00e454f149f1ac6578c7f6305
source Publicly Available Content Database; Nature; PubMed Central; Coronavirus Research Database; Springer Nature - nature.com Journals - Fully Open Access
subjects 631/114/1305
631/92/606
631/92/96
Algebra
Algorithms
Artificial neural networks
Blood-Brain Barrier - drug effects
Coders
Computer Simulation
Databases, Chemical
Datasets
Decision trees
Drug Discovery - methods
Drug-Related Side Effects and Adverse Reactions
Environmental protection
Graphical representations
Humanities and Social Sciences
Hydrophobic and Hydrophilic Interactions
Learning algorithms
Machine Learning
Molecular Conformation
Molecular properties
multidisciplinary
Neural networks
Neural Networks, Computer
Pharmaceutical Preparations - chemistry
Physical chemistry
Predictions
Science
Science (multidisciplinary)
Toxicity
Transformers
title Algebraic graph-assisted bidirectional transformers for molecular property prediction
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T06%3A01%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Algebraic%20graph-assisted%20bidirectional%20transformers%20for%20molecular%20property%20prediction&rft.jtitle=Nature%20communications&rft.au=Chen,%20Dong&rft.date=2021-06-10&rft.volume=12&rft.issue=1&rft.spage=3521&rft.epage=9&rft.pages=3521-9&rft.artnum=3521&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/s41467-021-23720-w&rft_dat=%3Cproquest_doaj_%3E2539746726%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c540t-6fd86ee2b56696c0efdaffdccf5b0949256f173ac675d738ff6d2e1a4cbcecd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2539746726&rft_id=info:pmid/34112777&rfr_iscdi=true