Loading…
Algebraic graph-assisted bidirectional transformers for molecular property prediction
The ability of molecular property prediction is of great significance to drug discovery, human health, and environmental protection. Despite considerable efforts, quantitative prediction of various molecular properties remains a challenge. Although some machine learning models, such as bidirectional...
Saved in:
Published in: | Nature communications 2021-06, Vol.12 (1), p.3521-9, Article 3521 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c540t-6fd86ee2b56696c0efdaffdccf5b0949256f173ac675d738ff6d2e1a4cbcecd3 |
---|---|
cites | cdi_FETCH-LOGICAL-c540t-6fd86ee2b56696c0efdaffdccf5b0949256f173ac675d738ff6d2e1a4cbcecd3 |
container_end_page | 9 |
container_issue | 1 |
container_start_page | 3521 |
container_title | Nature communications |
container_volume | 12 |
creator | Chen, Dong Gao, Kaifu Nguyen, Duc Duy Chen, Xin Jiang, Yi Wei, Guo-Wei Pan, Feng |
description | The ability of molecular property prediction is of great significance to drug discovery, human health, and environmental protection. Despite considerable efforts, quantitative prediction of various molecular properties remains a challenge. Although some machine learning models, such as bidirectional encoder from transformer, can incorporate massive unlabeled molecular data into molecular representations via a self-supervised learning strategy, it neglects three-dimensional (3D) stereochemical information. Algebraic graph, specifically, element-specific multiscale weighted colored algebraic graph, embeds complementary 3D molecular information into graph invariants. We propose an algebraic graph-assisted bidirectional transformer (AGBT) framework by fusing representations generated by algebraic graph and bidirectional transformer, as well as a variety of machine learning algorithms, including decision trees, multitask learning, and deep neural networks. We validate the proposed AGBT framework on eight molecular datasets, involving quantitative toxicity, physical chemistry, and physiology datasets. Extensive numerical experiments have shown that AGBT is a state-of-the-art framework for molecular property prediction.
Despite considerable efforts, quantitative prediction of various molecular properties remains a challenge. Here, the authors propose an algebraic graph-assisted bidirectional transformer, which can incorporate massive unlabeled molecular data into molecular representations via a self-supervised learning strategy and assisted with 3D stereochemical information from graphs. |
doi_str_mv | 10.1038/s41467-021-23720-w |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_964aeff00e454f149f1ac6578c7f6305</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_964aeff00e454f149f1ac6578c7f6305</doaj_id><sourcerecordid>2539746726</sourcerecordid><originalsourceid>FETCH-LOGICAL-c540t-6fd86ee2b56696c0efdaffdccf5b0949256f173ac675d738ff6d2e1a4cbcecd3</originalsourceid><addsrcrecordid>eNp9kctu1TAQhi0EolXpC7BAkVgHfHeyQaoqLpUqsSlry7HHqY9y4jDOoerbY05KaTd4MyPPP9-M_RPyltEPjIruY5FMatNSzlouDKft3QtyyqlkLTNcvHySn5DzUna0HtGzTsrX5ERIxrgx5pT8uJhGGNAl34zoltvWlZLKCqEZUkgIfk15dlOzoptLzLgHLE2NzT5P4A-Tw2bBvACu9zWBkI4Nb8ir6KYC5w_xjNx8-Xxz-a29_v716vLiuvVK0rXVMXQagA9K6157CjG4GIP3UQ20lz1XOjIjnNdGBSO6GHXgwJz0gwcfxBm52rAhu51dMO0d3tvskj1eZBytwzX5CWyvpYMYKQWpZGSyj6xilem8iVpQVVmfNtZyGPYQPMz1ydMz6PPKnG7tmH_ZjtU9j4D3DwDMPw9QVrvLB6x_VyxXojfVLa6rim8qj7kUhPg4gVH7x1i7GWursfZorL2rTe-e7vbY8tfGKhCboNTSPAL-m_0f7G8Li7JV</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2539746726</pqid></control><display><type>article</type><title>Algebraic graph-assisted bidirectional transformers for molecular property prediction</title><source>Publicly Available Content Database</source><source>Nature</source><source>PubMed Central</source><source>Coronavirus Research Database</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Chen, Dong ; Gao, Kaifu ; Nguyen, Duc Duy ; Chen, Xin ; Jiang, Yi ; Wei, Guo-Wei ; Pan, Feng</creator><creatorcontrib>Chen, Dong ; Gao, Kaifu ; Nguyen, Duc Duy ; Chen, Xin ; Jiang, Yi ; Wei, Guo-Wei ; Pan, Feng</creatorcontrib><description>The ability of molecular property prediction is of great significance to drug discovery, human health, and environmental protection. Despite considerable efforts, quantitative prediction of various molecular properties remains a challenge. Although some machine learning models, such as bidirectional encoder from transformer, can incorporate massive unlabeled molecular data into molecular representations via a self-supervised learning strategy, it neglects three-dimensional (3D) stereochemical information. Algebraic graph, specifically, element-specific multiscale weighted colored algebraic graph, embeds complementary 3D molecular information into graph invariants. We propose an algebraic graph-assisted bidirectional transformer (AGBT) framework by fusing representations generated by algebraic graph and bidirectional transformer, as well as a variety of machine learning algorithms, including decision trees, multitask learning, and deep neural networks. We validate the proposed AGBT framework on eight molecular datasets, involving quantitative toxicity, physical chemistry, and physiology datasets. Extensive numerical experiments have shown that AGBT is a state-of-the-art framework for molecular property prediction.
Despite considerable efforts, quantitative prediction of various molecular properties remains a challenge. Here, the authors propose an algebraic graph-assisted bidirectional transformer, which can incorporate massive unlabeled molecular data into molecular representations via a self-supervised learning strategy and assisted with 3D stereochemical information from graphs.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/s41467-021-23720-w</identifier><identifier>PMID: 34112777</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/114/1305 ; 631/92/606 ; 631/92/96 ; Algebra ; Algorithms ; Artificial neural networks ; Blood-Brain Barrier - drug effects ; Coders ; Computer Simulation ; Databases, Chemical ; Datasets ; Decision trees ; Drug Discovery - methods ; Drug-Related Side Effects and Adverse Reactions ; Environmental protection ; Graphical representations ; Humanities and Social Sciences ; Hydrophobic and Hydrophilic Interactions ; Learning algorithms ; Machine Learning ; Molecular Conformation ; Molecular properties ; multidisciplinary ; Neural networks ; Neural Networks, Computer ; Pharmaceutical Preparations - chemistry ; Physical chemistry ; Predictions ; Science ; Science (multidisciplinary) ; Toxicity ; Transformers</subject><ispartof>Nature communications, 2021-06, Vol.12 (1), p.3521-9, Article 3521</ispartof><rights>The Author(s) 2021</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c540t-6fd86ee2b56696c0efdaffdccf5b0949256f173ac675d738ff6d2e1a4cbcecd3</citedby><cites>FETCH-LOGICAL-c540t-6fd86ee2b56696c0efdaffdccf5b0949256f173ac675d738ff6d2e1a4cbcecd3</cites><orcidid>0000-0002-8216-1339 ; 0000-0001-5397-0447 ; 0000-0001-8132-5998</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2539746726/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2539746726?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,38516,43895,44590,53791,53793,74412,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34112777$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Dong</creatorcontrib><creatorcontrib>Gao, Kaifu</creatorcontrib><creatorcontrib>Nguyen, Duc Duy</creatorcontrib><creatorcontrib>Chen, Xin</creatorcontrib><creatorcontrib>Jiang, Yi</creatorcontrib><creatorcontrib>Wei, Guo-Wei</creatorcontrib><creatorcontrib>Pan, Feng</creatorcontrib><title>Algebraic graph-assisted bidirectional transformers for molecular property prediction</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>Nat Commun</addtitle><description>The ability of molecular property prediction is of great significance to drug discovery, human health, and environmental protection. Despite considerable efforts, quantitative prediction of various molecular properties remains a challenge. Although some machine learning models, such as bidirectional encoder from transformer, can incorporate massive unlabeled molecular data into molecular representations via a self-supervised learning strategy, it neglects three-dimensional (3D) stereochemical information. Algebraic graph, specifically, element-specific multiscale weighted colored algebraic graph, embeds complementary 3D molecular information into graph invariants. We propose an algebraic graph-assisted bidirectional transformer (AGBT) framework by fusing representations generated by algebraic graph and bidirectional transformer, as well as a variety of machine learning algorithms, including decision trees, multitask learning, and deep neural networks. We validate the proposed AGBT framework on eight molecular datasets, involving quantitative toxicity, physical chemistry, and physiology datasets. Extensive numerical experiments have shown that AGBT is a state-of-the-art framework for molecular property prediction.
Despite considerable efforts, quantitative prediction of various molecular properties remains a challenge. Here, the authors propose an algebraic graph-assisted bidirectional transformer, which can incorporate massive unlabeled molecular data into molecular representations via a self-supervised learning strategy and assisted with 3D stereochemical information from graphs.</description><subject>631/114/1305</subject><subject>631/92/606</subject><subject>631/92/96</subject><subject>Algebra</subject><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Blood-Brain Barrier - drug effects</subject><subject>Coders</subject><subject>Computer Simulation</subject><subject>Databases, Chemical</subject><subject>Datasets</subject><subject>Decision trees</subject><subject>Drug Discovery - methods</subject><subject>Drug-Related Side Effects and Adverse Reactions</subject><subject>Environmental protection</subject><subject>Graphical representations</subject><subject>Humanities and Social Sciences</subject><subject>Hydrophobic and Hydrophilic Interactions</subject><subject>Learning algorithms</subject><subject>Machine Learning</subject><subject>Molecular Conformation</subject><subject>Molecular properties</subject><subject>multidisciplinary</subject><subject>Neural networks</subject><subject>Neural Networks, Computer</subject><subject>Pharmaceutical Preparations - chemistry</subject><subject>Physical chemistry</subject><subject>Predictions</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Toxicity</subject><subject>Transformers</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>COVID</sourceid><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kctu1TAQhi0EolXpC7BAkVgHfHeyQaoqLpUqsSlry7HHqY9y4jDOoerbY05KaTd4MyPPP9-M_RPyltEPjIruY5FMatNSzlouDKft3QtyyqlkLTNcvHySn5DzUna0HtGzTsrX5ERIxrgx5pT8uJhGGNAl34zoltvWlZLKCqEZUkgIfk15dlOzoptLzLgHLE2NzT5P4A-Tw2bBvACu9zWBkI4Nb8ir6KYC5w_xjNx8-Xxz-a29_v716vLiuvVK0rXVMXQagA9K6157CjG4GIP3UQ20lz1XOjIjnNdGBSO6GHXgwJz0gwcfxBm52rAhu51dMO0d3tvskj1eZBytwzX5CWyvpYMYKQWpZGSyj6xilem8iVpQVVmfNtZyGPYQPMz1ydMz6PPKnG7tmH_ZjtU9j4D3DwDMPw9QVrvLB6x_VyxXojfVLa6rim8qj7kUhPg4gVH7x1i7GWursfZorL2rTe-e7vbY8tfGKhCboNTSPAL-m_0f7G8Li7JV</recordid><startdate>20210610</startdate><enddate>20210610</enddate><creator>Chen, Dong</creator><creator>Gao, Kaifu</creator><creator>Nguyen, Duc Duy</creator><creator>Chen, Xin</creator><creator>Jiang, Yi</creator><creator>Wei, Guo-Wei</creator><creator>Pan, Feng</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>COVID</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>SOI</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-8216-1339</orcidid><orcidid>https://orcid.org/0000-0001-5397-0447</orcidid><orcidid>https://orcid.org/0000-0001-8132-5998</orcidid></search><sort><creationdate>20210610</creationdate><title>Algebraic graph-assisted bidirectional transformers for molecular property prediction</title><author>Chen, Dong ; Gao, Kaifu ; Nguyen, Duc Duy ; Chen, Xin ; Jiang, Yi ; Wei, Guo-Wei ; Pan, Feng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c540t-6fd86ee2b56696c0efdaffdccf5b0949256f173ac675d738ff6d2e1a4cbcecd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>631/114/1305</topic><topic>631/92/606</topic><topic>631/92/96</topic><topic>Algebra</topic><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Blood-Brain Barrier - drug effects</topic><topic>Coders</topic><topic>Computer Simulation</topic><topic>Databases, Chemical</topic><topic>Datasets</topic><topic>Decision trees</topic><topic>Drug Discovery - methods</topic><topic>Drug-Related Side Effects and Adverse Reactions</topic><topic>Environmental protection</topic><topic>Graphical representations</topic><topic>Humanities and Social Sciences</topic><topic>Hydrophobic and Hydrophilic Interactions</topic><topic>Learning algorithms</topic><topic>Machine Learning</topic><topic>Molecular Conformation</topic><topic>Molecular properties</topic><topic>multidisciplinary</topic><topic>Neural networks</topic><topic>Neural Networks, Computer</topic><topic>Pharmaceutical Preparations - chemistry</topic><topic>Physical chemistry</topic><topic>Predictions</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Toxicity</topic><topic>Transformers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Dong</creatorcontrib><creatorcontrib>Gao, Kaifu</creatorcontrib><creatorcontrib>Nguyen, Duc Duy</creatorcontrib><creatorcontrib>Chen, Xin</creatorcontrib><creatorcontrib>Jiang, Yi</creatorcontrib><creatorcontrib>Wei, Guo-Wei</creatorcontrib><creatorcontrib>Pan, Feng</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>ProQuest_Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Biological Science Journals</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Dong</au><au>Gao, Kaifu</au><au>Nguyen, Duc Duy</au><au>Chen, Xin</au><au>Jiang, Yi</au><au>Wei, Guo-Wei</au><au>Pan, Feng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Algebraic graph-assisted bidirectional transformers for molecular property prediction</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><addtitle>Nat Commun</addtitle><date>2021-06-10</date><risdate>2021</risdate><volume>12</volume><issue>1</issue><spage>3521</spage><epage>9</epage><pages>3521-9</pages><artnum>3521</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>The ability of molecular property prediction is of great significance to drug discovery, human health, and environmental protection. Despite considerable efforts, quantitative prediction of various molecular properties remains a challenge. Although some machine learning models, such as bidirectional encoder from transformer, can incorporate massive unlabeled molecular data into molecular representations via a self-supervised learning strategy, it neglects three-dimensional (3D) stereochemical information. Algebraic graph, specifically, element-specific multiscale weighted colored algebraic graph, embeds complementary 3D molecular information into graph invariants. We propose an algebraic graph-assisted bidirectional transformer (AGBT) framework by fusing representations generated by algebraic graph and bidirectional transformer, as well as a variety of machine learning algorithms, including decision trees, multitask learning, and deep neural networks. We validate the proposed AGBT framework on eight molecular datasets, involving quantitative toxicity, physical chemistry, and physiology datasets. Extensive numerical experiments have shown that AGBT is a state-of-the-art framework for molecular property prediction.
Despite considerable efforts, quantitative prediction of various molecular properties remains a challenge. Here, the authors propose an algebraic graph-assisted bidirectional transformer, which can incorporate massive unlabeled molecular data into molecular representations via a self-supervised learning strategy and assisted with 3D stereochemical information from graphs.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>34112777</pmid><doi>10.1038/s41467-021-23720-w</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-8216-1339</orcidid><orcidid>https://orcid.org/0000-0001-5397-0447</orcidid><orcidid>https://orcid.org/0000-0001-8132-5998</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2041-1723 |
ispartof | Nature communications, 2021-06, Vol.12 (1), p.3521-9, Article 3521 |
issn | 2041-1723 2041-1723 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_964aeff00e454f149f1ac6578c7f6305 |
source | Publicly Available Content Database; Nature; PubMed Central; Coronavirus Research Database; Springer Nature - nature.com Journals - Fully Open Access |
subjects | 631/114/1305 631/92/606 631/92/96 Algebra Algorithms Artificial neural networks Blood-Brain Barrier - drug effects Coders Computer Simulation Databases, Chemical Datasets Decision trees Drug Discovery - methods Drug-Related Side Effects and Adverse Reactions Environmental protection Graphical representations Humanities and Social Sciences Hydrophobic and Hydrophilic Interactions Learning algorithms Machine Learning Molecular Conformation Molecular properties multidisciplinary Neural networks Neural Networks, Computer Pharmaceutical Preparations - chemistry Physical chemistry Predictions Science Science (multidisciplinary) Toxicity Transformers |
title | Algebraic graph-assisted bidirectional transformers for molecular property prediction |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T06%3A01%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Algebraic%20graph-assisted%20bidirectional%20transformers%20for%20molecular%20property%20prediction&rft.jtitle=Nature%20communications&rft.au=Chen,%20Dong&rft.date=2021-06-10&rft.volume=12&rft.issue=1&rft.spage=3521&rft.epage=9&rft.pages=3521-9&rft.artnum=3521&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/s41467-021-23720-w&rft_dat=%3Cproquest_doaj_%3E2539746726%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c540t-6fd86ee2b56696c0efdaffdccf5b0949256f173ac675d738ff6d2e1a4cbcecd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2539746726&rft_id=info:pmid/34112777&rfr_iscdi=true |