Loading…

Characteristics of horizontal gas-liquid two-phase flow measurement in a medium-sized pipe using gamma densitometry

Two-phase flows are common occurrences in many industrial applications. The understanding of their characteristics in industrial piping systems is vital for the efficient design, optimization, and operation of industrial processes. Most of the previous experimental studies involving the use of gamma...

Full description

Saved in:
Bibliographic Details
Published in:Scientific African 2020-11, Vol.10, p.e00550, Article e00550
Main Authors: Baba, Yahaya D., Ribeiro, Joseph X.F., Aliyu, Aliyu M., Archibong-Eso, Archibong, Abubakar, Umar D., Ehinmowo, Adegboyega B.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Two-phase flows are common occurrences in many industrial applications. The understanding of their characteristics in industrial piping systems is vital for the efficient design, optimization, and operation of industrial processes. Most of the previous experimental studies involving the use of gamma densitometers for holdup measurements in air-water mixtures are limited to smaller diameter pipes (generally regarded as those with < 50 mm in nominal diameter). Further, very few literature report experimental data obtained using gamma desitometers. This paper presents an application of a gamma densitometer in the measurement of two-phase flow characteristics in an intermediate diameter pipe (nominal diameter between 50 mm and 100 mm). Scaled air-water experiments were performed in a 17-m long, 0.0764-m internal diameter horizontal pipe. Liquid superficial velocity ranged between 0.1–0.4 m/s while gas superficial velocity ranged from 0.3 to 10.0 m/s. The measured parameters include liquid holdup, pressure gradient, flow pattern, and slug flow features. The flow patterns observed were stratified, stratified-wavy, plug, slug, and annular flows. Plug and slug flow patterns showed good agreement with established flow pattern maps. Furthermore, the slug translational velocity was observed to increase with increasing mixture velocity, as reported by previous authors, hence establishing the reliability of the instrumentation employed. The slug body length was also measured using the gamma densitometer and was found to be within the range 24–36D with a mean length of 30.6D.
ISSN:2468-2276
2468-2276
DOI:10.1016/j.sciaf.2020.e00550