Loading…

Nanoliposomal Encapsulation of Capparis spinosa Extract and Its Application in Jelly Formulation

This research aimed to encapsulate the fruit extract to increase its stability for incorporation into food products such as jelly or jelly powder. After extraction, the nanoliposomes containing the extract were prepared in ratios of 60-0, 50-10, 40-20, and 30-30 lecithin-to-cholesterol. The effects...

Full description

Saved in:
Bibliographic Details
Published in:Molecules (Basel, Switzerland) Switzerland), 2024-06, Vol.29 (12), p.2804
Main Authors: Zahedi, Younes, Shaddel, Rezvan, Salamatian, Masoumeh, Szumny, Antoni
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This research aimed to encapsulate the fruit extract to increase its stability for incorporation into food products such as jelly or jelly powder. After extraction, the nanoliposomes containing the extract were prepared in ratios of 60-0, 50-10, 40-20, and 30-30 lecithin-to-cholesterol. The effects of lecithin-to-cholesterol concentrations on the related parameters were then evaluated. The results showed that the average particle size was in the range of 95.05 to 164.25 nm, and with an increasing cholesterol concentration, the particle size of the nanoliposomes increased. The addition of cholesterol increased the zeta potential from -60.40 to -68.55 millivolt. Furthermore, cholesterol led to an increase in encapsulation efficiency, and even improved the stability of phenolic compounds loaded in nanoliposomes during storage time. Fourier transform infrared (FTIR) spectroscopy confirmed the successful loading of the extract. Field emission scanning electron microscopy (FE-SEM) analysis revealed nano-sized spherical and almost-elliptical liposomes. For jelly powders, the water solubility index ranged from 39.5 to 43.7% ( > 0.05), and the hygroscopicity values ranged between 1.22 and 9.36 g/100 g ( < 0.05). In conclusion, nanoencapsulated extract displayed improved stability and can be used in jelly preparation without any challenge or unfavorable perception.
ISSN:1420-3049
1420-3049
DOI:10.3390/molecules29122804