Loading…

Identification of estrogen receptor agonists among hydroxylated polychlorinated biphenyls using classification-based quantitative structure–activity relationship models

[Display omitted] •Many adverse effects of OH-PCBs are initiated by estrogen receptor (ER) activation.•Identification of ER agonists is crucial in assessing the adverse effects of OH-PCBs.•Classification models to identify ER agonists among OH-PCBs were developed.•The developed models are useful for...

Full description

Saved in:
Bibliographic Details
Published in:Current research in toxicology 2024, Vol.6, p.100158-100158, Article 100158
Main Authors: Akinola, Lukman K., Uzairu, Adamu, Shallangwa, Gideon A., Abechi, Stephen E., Umar, Abdullahi B.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c420t-fa14f40e372d550e83f97182967e13f99c028a7ffd15d678021bcc5f80c2f4ed3
container_end_page 100158
container_issue
container_start_page 100158
container_title Current research in toxicology
container_volume 6
creator Akinola, Lukman K.
Uzairu, Adamu
Shallangwa, Gideon A.
Abechi, Stephen E.
Umar, Abdullahi B.
description [Display omitted] •Many adverse effects of OH-PCBs are initiated by estrogen receptor (ER) activation.•Identification of ER agonists is crucial in assessing the adverse effects of OH-PCBs.•Classification models to identify ER agonists among OH-PCBs were developed.•The developed models are useful for prioritization of OH-PCBs in toxicity testing. Identification of estrogen receptor (ER) agonists among environmental toxicants is essential for assessing the potential impact of toxicants on human health. Using 2D autocorrelation descriptors as predictor variables, two binary logistic regression models were developed to identify active ER agonists among hydroxylated polychlorinated biphenyls (OH-PCBs). The classifications made by the two models on the training set compounds resulted in accuracy, sensitivity and specificity of 95.9 %, 93.9 % and 97.6 % for ERα dataset and 91.9 %, 90.9 % and 92.7 % for ERβ dataset. The areas under the ROC curves, constructed with the training set data, were found to be 0.985 and 0.987 for the two models. Predictions made by models I and II correctly classified 84.0 % and 88.0 % of the test set compounds and 89.8 % and 85.8% of the cross-validation set compounds respectively. The two classification-based QSAR models proposed in this paper are considered robust and reliable for rapid identification of ERα and ERβ agonists among OH-PCB congeners.
doi_str_mv 10.1016/j.crtox.2024.100158
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_969984ea76ff44ed8ef6d1c676e2ee6f</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S2666027X24000112</els_id><doaj_id>oai_doaj_org_article_969984ea76ff44ed8ef6d1c676e2ee6f</doaj_id><sourcerecordid>2937339256</sourcerecordid><originalsourceid>FETCH-LOGICAL-c420t-fa14f40e372d550e83f97182967e13f99c028a7ffd15d678021bcc5f80c2f4ed3</originalsourceid><addsrcrecordid>eNp9Uctq3DAUNaWlCWm-oFC07MZTPWzJXnRRQh8DgW5a6E5opKsZDRrLkeQQ7_IP_Yt-Vr4kyjgduupKV4fz4N5TVW8JXhFM-If9Sscc7lYU06YgmLTdi-qccs5rTMWvl__MZ9VlSnuMy9w3mIvX1RnrGtZiys6rP2sDQ3bWaZVdGFCwCFKOYQsDiqBhzCEitQ2DSzkhdQjDFu1mE8Pd7FUGg8bgZ73zIbrh-N-4cQfD7BOakitk7VVKJ_96o1Ih3UyqhOYC3QIqcZPOU4SH-99KF8jluWT7oyDt3IgOwYBPb6pXVvkEl8_vRfXzy-cfV9_q6-9f11efrmvdUJxrq0hjGwxMUNO2GDpme0E62nMBpMy9xrRTwlpDWsNFhynZaN3aDmtqGzDsolovviaovRyjO6g4y6CcPAIhbqWK2WkPsud93zWgBLe2KdoOLDdEc8GBAnBbvN4vXmMMN1O5rDy4pMF7NUCYkqQ9E4z1tOWFyhaqjiGlCPYUTbB86lzu5bFz-dS5XDovqnfPAdPmAOak-dtwIXxcCOWCcOsgyqQdDBqMK_3mspP7b8AjX8nGSw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2937339256</pqid></control><display><type>article</type><title>Identification of estrogen receptor agonists among hydroxylated polychlorinated biphenyls using classification-based quantitative structure–activity relationship models</title><source>ScienceDirect Journals</source><source>PubMed Central</source><creator>Akinola, Lukman K. ; Uzairu, Adamu ; Shallangwa, Gideon A. ; Abechi, Stephen E. ; Umar, Abdullahi B.</creator><creatorcontrib>Akinola, Lukman K. ; Uzairu, Adamu ; Shallangwa, Gideon A. ; Abechi, Stephen E. ; Umar, Abdullahi B.</creatorcontrib><description>[Display omitted] •Many adverse effects of OH-PCBs are initiated by estrogen receptor (ER) activation.•Identification of ER agonists is crucial in assessing the adverse effects of OH-PCBs.•Classification models to identify ER agonists among OH-PCBs were developed.•The developed models are useful for prioritization of OH-PCBs in toxicity testing. Identification of estrogen receptor (ER) agonists among environmental toxicants is essential for assessing the potential impact of toxicants on human health. Using 2D autocorrelation descriptors as predictor variables, two binary logistic regression models were developed to identify active ER agonists among hydroxylated polychlorinated biphenyls (OH-PCBs). The classifications made by the two models on the training set compounds resulted in accuracy, sensitivity and specificity of 95.9 %, 93.9 % and 97.6 % for ERα dataset and 91.9 %, 90.9 % and 92.7 % for ERβ dataset. The areas under the ROC curves, constructed with the training set data, were found to be 0.985 and 0.987 for the two models. Predictions made by models I and II correctly classified 84.0 % and 88.0 % of the test set compounds and 89.8 % and 85.8% of the cross-validation set compounds respectively. The two classification-based QSAR models proposed in this paper are considered robust and reliable for rapid identification of ERα and ERβ agonists among OH-PCB congeners.</description><identifier>ISSN: 2666-027X</identifier><identifier>EISSN: 2666-027X</identifier><identifier>DOI: 10.1016/j.crtox.2024.100158</identifier><identifier>PMID: 38435023</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Autocorrelation descriptor ; Binary logistic regression ; Estrogen receptor ; Hydroxylated polychlorinated biphenyl ; Quantitative structure–activity relationship</subject><ispartof>Current research in toxicology, 2024, Vol.6, p.100158-100158, Article 100158</ispartof><rights>2024 The Author(s)</rights><rights>2024 The Author(s).</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c420t-fa14f40e372d550e83f97182967e13f99c028a7ffd15d678021bcc5f80c2f4ed3</cites><orcidid>0000-0002-4948-8401</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S2666027X24000112$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3549,4024,27923,27924,27925,45780</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38435023$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Akinola, Lukman K.</creatorcontrib><creatorcontrib>Uzairu, Adamu</creatorcontrib><creatorcontrib>Shallangwa, Gideon A.</creatorcontrib><creatorcontrib>Abechi, Stephen E.</creatorcontrib><creatorcontrib>Umar, Abdullahi B.</creatorcontrib><title>Identification of estrogen receptor agonists among hydroxylated polychlorinated biphenyls using classification-based quantitative structure–activity relationship models</title><title>Current research in toxicology</title><addtitle>Curr Res Toxicol</addtitle><description>[Display omitted] •Many adverse effects of OH-PCBs are initiated by estrogen receptor (ER) activation.•Identification of ER agonists is crucial in assessing the adverse effects of OH-PCBs.•Classification models to identify ER agonists among OH-PCBs were developed.•The developed models are useful for prioritization of OH-PCBs in toxicity testing. Identification of estrogen receptor (ER) agonists among environmental toxicants is essential for assessing the potential impact of toxicants on human health. Using 2D autocorrelation descriptors as predictor variables, two binary logistic regression models were developed to identify active ER agonists among hydroxylated polychlorinated biphenyls (OH-PCBs). The classifications made by the two models on the training set compounds resulted in accuracy, sensitivity and specificity of 95.9 %, 93.9 % and 97.6 % for ERα dataset and 91.9 %, 90.9 % and 92.7 % for ERβ dataset. The areas under the ROC curves, constructed with the training set data, were found to be 0.985 and 0.987 for the two models. Predictions made by models I and II correctly classified 84.0 % and 88.0 % of the test set compounds and 89.8 % and 85.8% of the cross-validation set compounds respectively. The two classification-based QSAR models proposed in this paper are considered robust and reliable for rapid identification of ERα and ERβ agonists among OH-PCB congeners.</description><subject>Autocorrelation descriptor</subject><subject>Binary logistic regression</subject><subject>Estrogen receptor</subject><subject>Hydroxylated polychlorinated biphenyl</subject><subject>Quantitative structure–activity relationship</subject><issn>2666-027X</issn><issn>2666-027X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNp9Uctq3DAUNaWlCWm-oFC07MZTPWzJXnRRQh8DgW5a6E5opKsZDRrLkeQQ7_IP_Yt-Vr4kyjgduupKV4fz4N5TVW8JXhFM-If9Sscc7lYU06YgmLTdi-qccs5rTMWvl__MZ9VlSnuMy9w3mIvX1RnrGtZiys6rP2sDQ3bWaZVdGFCwCFKOYQsDiqBhzCEitQ2DSzkhdQjDFu1mE8Pd7FUGg8bgZ73zIbrh-N-4cQfD7BOakitk7VVKJ_96o1Ih3UyqhOYC3QIqcZPOU4SH-99KF8jluWT7oyDt3IgOwYBPb6pXVvkEl8_vRfXzy-cfV9_q6-9f11efrmvdUJxrq0hjGwxMUNO2GDpme0E62nMBpMy9xrRTwlpDWsNFhynZaN3aDmtqGzDsolovviaovRyjO6g4y6CcPAIhbqWK2WkPsud93zWgBLe2KdoOLDdEc8GBAnBbvN4vXmMMN1O5rDy4pMF7NUCYkqQ9E4z1tOWFyhaqjiGlCPYUTbB86lzu5bFz-dS5XDovqnfPAdPmAOak-dtwIXxcCOWCcOsgyqQdDBqMK_3mspP7b8AjX8nGSw</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Akinola, Lukman K.</creator><creator>Uzairu, Adamu</creator><creator>Shallangwa, Gideon A.</creator><creator>Abechi, Stephen E.</creator><creator>Umar, Abdullahi B.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-4948-8401</orcidid></search><sort><creationdate>2024</creationdate><title>Identification of estrogen receptor agonists among hydroxylated polychlorinated biphenyls using classification-based quantitative structure–activity relationship models</title><author>Akinola, Lukman K. ; Uzairu, Adamu ; Shallangwa, Gideon A. ; Abechi, Stephen E. ; Umar, Abdullahi B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c420t-fa14f40e372d550e83f97182967e13f99c028a7ffd15d678021bcc5f80c2f4ed3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Autocorrelation descriptor</topic><topic>Binary logistic regression</topic><topic>Estrogen receptor</topic><topic>Hydroxylated polychlorinated biphenyl</topic><topic>Quantitative structure–activity relationship</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Akinola, Lukman K.</creatorcontrib><creatorcontrib>Uzairu, Adamu</creatorcontrib><creatorcontrib>Shallangwa, Gideon A.</creatorcontrib><creatorcontrib>Abechi, Stephen E.</creatorcontrib><creatorcontrib>Umar, Abdullahi B.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Current research in toxicology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Akinola, Lukman K.</au><au>Uzairu, Adamu</au><au>Shallangwa, Gideon A.</au><au>Abechi, Stephen E.</au><au>Umar, Abdullahi B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Identification of estrogen receptor agonists among hydroxylated polychlorinated biphenyls using classification-based quantitative structure–activity relationship models</atitle><jtitle>Current research in toxicology</jtitle><addtitle>Curr Res Toxicol</addtitle><date>2024</date><risdate>2024</risdate><volume>6</volume><spage>100158</spage><epage>100158</epage><pages>100158-100158</pages><artnum>100158</artnum><issn>2666-027X</issn><eissn>2666-027X</eissn><abstract>[Display omitted] •Many adverse effects of OH-PCBs are initiated by estrogen receptor (ER) activation.•Identification of ER agonists is crucial in assessing the adverse effects of OH-PCBs.•Classification models to identify ER agonists among OH-PCBs were developed.•The developed models are useful for prioritization of OH-PCBs in toxicity testing. Identification of estrogen receptor (ER) agonists among environmental toxicants is essential for assessing the potential impact of toxicants on human health. Using 2D autocorrelation descriptors as predictor variables, two binary logistic regression models were developed to identify active ER agonists among hydroxylated polychlorinated biphenyls (OH-PCBs). The classifications made by the two models on the training set compounds resulted in accuracy, sensitivity and specificity of 95.9 %, 93.9 % and 97.6 % for ERα dataset and 91.9 %, 90.9 % and 92.7 % for ERβ dataset. The areas under the ROC curves, constructed with the training set data, were found to be 0.985 and 0.987 for the two models. Predictions made by models I and II correctly classified 84.0 % and 88.0 % of the test set compounds and 89.8 % and 85.8% of the cross-validation set compounds respectively. The two classification-based QSAR models proposed in this paper are considered robust and reliable for rapid identification of ERα and ERβ agonists among OH-PCB congeners.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>38435023</pmid><doi>10.1016/j.crtox.2024.100158</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-4948-8401</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2666-027X
ispartof Current research in toxicology, 2024, Vol.6, p.100158-100158, Article 100158
issn 2666-027X
2666-027X
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_969984ea76ff44ed8ef6d1c676e2ee6f
source ScienceDirect Journals; PubMed Central
subjects Autocorrelation descriptor
Binary logistic regression
Estrogen receptor
Hydroxylated polychlorinated biphenyl
Quantitative structure–activity relationship
title Identification of estrogen receptor agonists among hydroxylated polychlorinated biphenyls using classification-based quantitative structure–activity relationship models
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T05%3A10%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Identification%20of%20estrogen%20receptor%20agonists%20among%20hydroxylated%20polychlorinated%20biphenyls%20using%20classification-based%20quantitative%20structure%E2%80%93activity%20relationship%20models&rft.jtitle=Current%20research%20in%20toxicology&rft.au=Akinola,%20Lukman%20K.&rft.date=2024&rft.volume=6&rft.spage=100158&rft.epage=100158&rft.pages=100158-100158&rft.artnum=100158&rft.issn=2666-027X&rft.eissn=2666-027X&rft_id=info:doi/10.1016/j.crtox.2024.100158&rft_dat=%3Cproquest_doaj_%3E2937339256%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c420t-fa14f40e372d550e83f97182967e13f99c028a7ffd15d678021bcc5f80c2f4ed3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2937339256&rft_id=info:pmid/38435023&rfr_iscdi=true