Loading…

Structural Observability Analysis of Large Scale Systems Using Modelica and Python

State observability of dynamic systems is a notion which determines how well the states can be inferred from input-output data. For small-scale systems, observability analysis can be done manually, while for large-scale systems an automated systematic approach is advantageous. Here we present an app...

Full description

Saved in:
Bibliographic Details
Published in:Modeling, identification and control identification and control, 2015, Vol.36 (1), p.53-65
Main Authors: Perera, M. Anushka S., Lie, Bernt, Pfeiffer, Carlos F.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c339t-478725638e7c3ac4f2f1fea262b0471243dc324667dcbc6dbe4860b090b7772b3
cites cdi_FETCH-LOGICAL-c339t-478725638e7c3ac4f2f1fea262b0471243dc324667dcbc6dbe4860b090b7772b3
container_end_page 65
container_issue 1
container_start_page 53
container_title Modeling, identification and control
container_volume 36
creator Perera, M. Anushka S.
Lie, Bernt
Pfeiffer, Carlos F.
description State observability of dynamic systems is a notion which determines how well the states can be inferred from input-output data. For small-scale systems, observability analysis can be done manually, while for large-scale systems an automated systematic approach is advantageous. Here we present an approach based on the concept of structural observability analysis, using graph theory. This approach can be automated and applied to large-scale, complex dynamic systems modeled using Modelica. Modelica models are imported into Python via the JModelica.org-CasADi interface, and the Python packages NetworkX (for graph-theoretic analysis) and PyGraphviz (for graph layout and visualization) are used to analyze the structural observability of the systems. The method is demonstrated with a Modelica model created for the Copper production plant at Glencore Nikkelverk, Kristiansand, Norway. The Copper plant model has 39 states, 11 disturbances and 5 uncertain parameters. The possibility of estimating disturbances and parameters in addition to estimating the states are also discussed from the graph-theory point of view. All the software tools used on the analysis are freely available.
doi_str_mv 10.4173/mic.2015.1.4
format article
fullrecord <record><control><sourceid>doaj_cross</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_96af4da7bc26453a9f2c2b7a30c8de11</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_96af4da7bc26453a9f2c2b7a30c8de11</doaj_id><sourcerecordid>oai_doaj_org_article_96af4da7bc26453a9f2c2b7a30c8de11</sourcerecordid><originalsourceid>FETCH-LOGICAL-c339t-478725638e7c3ac4f2f1fea262b0471243dc324667dcbc6dbe4860b090b7772b3</originalsourceid><addsrcrecordid>eNo90M1KAzEUhuEgCpbanReQC3DG_E2SWZbiT6FSsXYdTjJJjUxnJJkKc_e2VtycD87iWbwI3VJSCqr4_T66khFalbQUF2hCdU0Kypm-RBPCOSsUr_g1muUcLSGC1VpTOkFvmyEd3HBI0OK1zT59g41tHEY876Adc8y4D3gFaefxxkF7vGMe_D7jbY7dDr_0jW-jAwxdg1_H4aPvbtBVgDb72d9O0fbx4X3xXKzWT8vFfFU4zuuhEEorVkmuvXIcnAgs0OCBSWaJUJQJ3jjOhJSqcdbJxnqhJbGkJlYpxSyfouXZbXr4NF8p7iGNpodofh992hlIQ3StN7WEIBpQ1jEpKg51YI5ZBZw43XhKj9bd2XKpzzn58O9RYk55zTGvOeU11Aj-A_HBbcQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Structural Observability Analysis of Large Scale Systems Using Modelica and Python</title><source>Publicly Available Content (ProQuest)</source><creator>Perera, M. Anushka S. ; Lie, Bernt ; Pfeiffer, Carlos F.</creator><creatorcontrib>Perera, M. Anushka S. ; Lie, Bernt ; Pfeiffer, Carlos F.</creatorcontrib><description>State observability of dynamic systems is a notion which determines how well the states can be inferred from input-output data. For small-scale systems, observability analysis can be done manually, while for large-scale systems an automated systematic approach is advantageous. Here we present an approach based on the concept of structural observability analysis, using graph theory. This approach can be automated and applied to large-scale, complex dynamic systems modeled using Modelica. Modelica models are imported into Python via the JModelica.org-CasADi interface, and the Python packages NetworkX (for graph-theoretic analysis) and PyGraphviz (for graph layout and visualization) are used to analyze the structural observability of the systems. The method is demonstrated with a Modelica model created for the Copper production plant at Glencore Nikkelverk, Kristiansand, Norway. The Copper plant model has 39 states, 11 disturbances and 5 uncertain parameters. The possibility of estimating disturbances and parameters in addition to estimating the states are also discussed from the graph-theory point of view. All the software tools used on the analysis are freely available.</description><identifier>ISSN: 0332-7353</identifier><identifier>EISSN: 1890-1328</identifier><identifier>DOI: 10.4173/mic.2015.1.4</identifier><language>eng</language><publisher>Norwegian Society of Automatic Control</publisher><subject>CasADi ; graph-theory ; JModelica.org ; large-scale systems ; Modelica ; NetworkX ; PyGraphviz ; Python ; Structural observability</subject><ispartof>Modeling, identification and control, 2015, Vol.36 (1), p.53-65</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c339t-478725638e7c3ac4f2f1fea262b0471243dc324667dcbc6dbe4860b090b7772b3</citedby><cites>FETCH-LOGICAL-c339t-478725638e7c3ac4f2f1fea262b0471243dc324667dcbc6dbe4860b090b7772b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4024,27923,27924,27925</link.rule.ids></links><search><creatorcontrib>Perera, M. Anushka S.</creatorcontrib><creatorcontrib>Lie, Bernt</creatorcontrib><creatorcontrib>Pfeiffer, Carlos F.</creatorcontrib><title>Structural Observability Analysis of Large Scale Systems Using Modelica and Python</title><title>Modeling, identification and control</title><description>State observability of dynamic systems is a notion which determines how well the states can be inferred from input-output data. For small-scale systems, observability analysis can be done manually, while for large-scale systems an automated systematic approach is advantageous. Here we present an approach based on the concept of structural observability analysis, using graph theory. This approach can be automated and applied to large-scale, complex dynamic systems modeled using Modelica. Modelica models are imported into Python via the JModelica.org-CasADi interface, and the Python packages NetworkX (for graph-theoretic analysis) and PyGraphviz (for graph layout and visualization) are used to analyze the structural observability of the systems. The method is demonstrated with a Modelica model created for the Copper production plant at Glencore Nikkelverk, Kristiansand, Norway. The Copper plant model has 39 states, 11 disturbances and 5 uncertain parameters. The possibility of estimating disturbances and parameters in addition to estimating the states are also discussed from the graph-theory point of view. All the software tools used on the analysis are freely available.</description><subject>CasADi</subject><subject>graph-theory</subject><subject>JModelica.org</subject><subject>large-scale systems</subject><subject>Modelica</subject><subject>NetworkX</subject><subject>PyGraphviz</subject><subject>Python</subject><subject>Structural observability</subject><issn>0332-7353</issn><issn>1890-1328</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNo90M1KAzEUhuEgCpbanReQC3DG_E2SWZbiT6FSsXYdTjJJjUxnJJkKc_e2VtycD87iWbwI3VJSCqr4_T66khFalbQUF2hCdU0Kypm-RBPCOSsUr_g1muUcLSGC1VpTOkFvmyEd3HBI0OK1zT59g41tHEY876Adc8y4D3gFaefxxkF7vGMe_D7jbY7dDr_0jW-jAwxdg1_H4aPvbtBVgDb72d9O0fbx4X3xXKzWT8vFfFU4zuuhEEorVkmuvXIcnAgs0OCBSWaJUJQJ3jjOhJSqcdbJxnqhJbGkJlYpxSyfouXZbXr4NF8p7iGNpodofh992hlIQ3StN7WEIBpQ1jEpKg51YI5ZBZw43XhKj9bd2XKpzzn58O9RYk55zTGvOeU11Aj-A_HBbcQ</recordid><startdate>2015</startdate><enddate>2015</enddate><creator>Perera, M. Anushka S.</creator><creator>Lie, Bernt</creator><creator>Pfeiffer, Carlos F.</creator><general>Norwegian Society of Automatic Control</general><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope></search><sort><creationdate>2015</creationdate><title>Structural Observability Analysis of Large Scale Systems Using Modelica and Python</title><author>Perera, M. Anushka S. ; Lie, Bernt ; Pfeiffer, Carlos F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c339t-478725638e7c3ac4f2f1fea262b0471243dc324667dcbc6dbe4860b090b7772b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>CasADi</topic><topic>graph-theory</topic><topic>JModelica.org</topic><topic>large-scale systems</topic><topic>Modelica</topic><topic>NetworkX</topic><topic>PyGraphviz</topic><topic>Python</topic><topic>Structural observability</topic><toplevel>online_resources</toplevel><creatorcontrib>Perera, M. Anushka S.</creatorcontrib><creatorcontrib>Lie, Bernt</creatorcontrib><creatorcontrib>Pfeiffer, Carlos F.</creatorcontrib><collection>CrossRef</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Modeling, identification and control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Perera, M. Anushka S.</au><au>Lie, Bernt</au><au>Pfeiffer, Carlos F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structural Observability Analysis of Large Scale Systems Using Modelica and Python</atitle><jtitle>Modeling, identification and control</jtitle><date>2015</date><risdate>2015</risdate><volume>36</volume><issue>1</issue><spage>53</spage><epage>65</epage><pages>53-65</pages><issn>0332-7353</issn><eissn>1890-1328</eissn><abstract>State observability of dynamic systems is a notion which determines how well the states can be inferred from input-output data. For small-scale systems, observability analysis can be done manually, while for large-scale systems an automated systematic approach is advantageous. Here we present an approach based on the concept of structural observability analysis, using graph theory. This approach can be automated and applied to large-scale, complex dynamic systems modeled using Modelica. Modelica models are imported into Python via the JModelica.org-CasADi interface, and the Python packages NetworkX (for graph-theoretic analysis) and PyGraphviz (for graph layout and visualization) are used to analyze the structural observability of the systems. The method is demonstrated with a Modelica model created for the Copper production plant at Glencore Nikkelverk, Kristiansand, Norway. The Copper plant model has 39 states, 11 disturbances and 5 uncertain parameters. The possibility of estimating disturbances and parameters in addition to estimating the states are also discussed from the graph-theory point of view. All the software tools used on the analysis are freely available.</abstract><pub>Norwegian Society of Automatic Control</pub><doi>10.4173/mic.2015.1.4</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0332-7353
ispartof Modeling, identification and control, 2015, Vol.36 (1), p.53-65
issn 0332-7353
1890-1328
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_96af4da7bc26453a9f2c2b7a30c8de11
source Publicly Available Content (ProQuest)
subjects CasADi
graph-theory
JModelica.org
large-scale systems
Modelica
NetworkX
PyGraphviz
Python
Structural observability
title Structural Observability Analysis of Large Scale Systems Using Modelica and Python
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T00%3A25%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-doaj_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structural%20Observability%20Analysis%20of%20Large%20Scale%20Systems%20Using%20Modelica%20and%20Python&rft.jtitle=Modeling,%20identification%20and%20control&rft.au=Perera,%20M.%20Anushka%20S.&rft.date=2015&rft.volume=36&rft.issue=1&rft.spage=53&rft.epage=65&rft.pages=53-65&rft.issn=0332-7353&rft.eissn=1890-1328&rft_id=info:doi/10.4173/mic.2015.1.4&rft_dat=%3Cdoaj_cross%3Eoai_doaj_org_article_96af4da7bc26453a9f2c2b7a30c8de11%3C/doaj_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c339t-478725638e7c3ac4f2f1fea262b0471243dc324667dcbc6dbe4860b090b7772b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true