Loading…
An efficient alpha helix model and simulation framework for stationary electrostatic interaction force estimation
The alpha-helix coiled-coils within talin’s rod domain have mechanical and signalling functions through their unfolding and refolding dynamics. A better understanding of talin unfolding events and the forces that are involved should allow better prediction of talin signalling. To overcome the curren...
Saved in:
Published in: | Scientific reports 2021-04, Vol.11 (1), p.9053-9053, Article 9053 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c491t-27b15c6ca8c112e8e5781e53e8443678819b534363177fbd78c2e63eae835b2b3 |
container_end_page | 9053 |
container_issue | 1 |
container_start_page | 9053 |
container_title | Scientific reports |
container_volume | 11 |
creator | Butcher, Guy G. Harwin, William S. Jones, Chris I. |
description | The alpha-helix coiled-coils within talin’s rod domain have mechanical and signalling functions through their unfolding and refolding dynamics. A better understanding of talin unfolding events and the forces that are involved should allow better prediction of talin signalling. To overcome the current limitations of force measuring in molecular dynamics simulations, a new simulation framework was developed which operated directly within the force domain. Along with a corresponding alpha-helix modelling method, the simulation framework was developed drawing on robotic kinematics to specifically target force interactions. Coordinate frames were used efficiently to compartmentalise the simulation structures and static analysis was applied to determine the propagation of forces and torques through the protein structure. The results of the electrostatic approximation using Coulomb’s law shows a simulated force interaction within the physiological relevant range of 5–40 pN for the rod sub-domains of talin. This covers the range of forces talin operates in and is 2–3 orders of magnitude closer to experimentally measured values than the compared all-atom and coarse-grained molecular dynamics. This targeted, force-based simulation is, therefore, able to produce more realistic forces values than previous simulation methods. |
doi_str_mv | 10.1038/s41598-021-88369-3 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_96d7a3dd6b0c44e88ec57b54524e450a</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_96d7a3dd6b0c44e88ec57b54524e450a</doaj_id><sourcerecordid>2518853472</sourcerecordid><originalsourceid>FETCH-LOGICAL-c491t-27b15c6ca8c112e8e5781e53e8443678819b534363177fbd78c2e63eae835b2b3</originalsourceid><addsrcrecordid>eNp9UstO3TAQjaqigoAfYFFZ6qabFD9je1MJoT6QkNiUteU4k3t968QXO2nL39cklEIX9cajmTNnZo5OVZ0R_IFgps4zJ0KrGlNSK8UaXbNX1RHFXNSUUfr6WXxYnea8w-UJqjnRb6pDxjSWRKuj6u5iRND33nkYJ2TDfmvRFoL_hYbYQUB27FD2wxzs5OOI-mQH-BnTd9THhPK0ZG26RxDATSkuGYf8OEGybm2JyQGCPPlhQZ9UB70NGU4f_-Pq9vOnb5df6-ubL1eXF9e145pMNZUtEa5xVjlCKCgQUhEQDBTnrJFKEd0KVkJGpOzbTipHoWFgQTHR0pYdV1crbxftzuxTGZ_uTbTeLImYNsamsmwAo5tOWtZ1TYsd56AUOCFbwQXlwAW2hevjyrWf2wE6V7RKNrwgfVkZ_dZs4g-jsNRM8ULw_pEgxbu5iGEGnx2EYEeIczZUEM2IKJcX6Lt_oLs4p7FI9YBSqhwtaUHRFeWK6DlB_7QMwebBIGY1iCkGMYtBDCtNb5-f8dTyxw4FwFZALqVxA-nv7P_Q_gYVvsgN</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2518853472</pqid></control><display><type>article</type><title>An efficient alpha helix model and simulation framework for stationary electrostatic interaction force estimation</title><source>Publicly Available Content Database</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Butcher, Guy G. ; Harwin, William S. ; Jones, Chris I.</creator><creatorcontrib>Butcher, Guy G. ; Harwin, William S. ; Jones, Chris I.</creatorcontrib><description>The alpha-helix coiled-coils within talin’s rod domain have mechanical and signalling functions through their unfolding and refolding dynamics. A better understanding of talin unfolding events and the forces that are involved should allow better prediction of talin signalling. To overcome the current limitations of force measuring in molecular dynamics simulations, a new simulation framework was developed which operated directly within the force domain. Along with a corresponding alpha-helix modelling method, the simulation framework was developed drawing on robotic kinematics to specifically target force interactions. Coordinate frames were used efficiently to compartmentalise the simulation structures and static analysis was applied to determine the propagation of forces and torques through the protein structure. The results of the electrostatic approximation using Coulomb’s law shows a simulated force interaction within the physiological relevant range of 5–40 pN for the rod sub-domains of talin. This covers the range of forces talin operates in and is 2–3 orders of magnitude closer to experimentally measured values than the compared all-atom and coarse-grained molecular dynamics. This targeted, force-based simulation is, therefore, able to produce more realistic forces values than previous simulation methods.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-021-88369-3</identifier><identifier>PMID: 33907198</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/114 ; 631/114/2397 ; 631/114/470 ; 631/114/663 ; 631/114/794 ; 631/57 ; 631/57/2266 ; Electrostatic properties ; Humanities and Social Sciences ; Kinematics ; Molecular dynamics ; multidisciplinary ; Protein structure ; Science ; Science (multidisciplinary) ; Simulation ; Talin</subject><ispartof>Scientific reports, 2021-04, Vol.11 (1), p.9053-9053, Article 9053</ispartof><rights>The Author(s) 2021</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c491t-27b15c6ca8c112e8e5781e53e8443678819b534363177fbd78c2e63eae835b2b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2518853472/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2518853472?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25731,27901,27902,36989,36990,44566,53766,53768,74869</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33907198$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Butcher, Guy G.</creatorcontrib><creatorcontrib>Harwin, William S.</creatorcontrib><creatorcontrib>Jones, Chris I.</creatorcontrib><title>An efficient alpha helix model and simulation framework for stationary electrostatic interaction force estimation</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>The alpha-helix coiled-coils within talin’s rod domain have mechanical and signalling functions through their unfolding and refolding dynamics. A better understanding of talin unfolding events and the forces that are involved should allow better prediction of talin signalling. To overcome the current limitations of force measuring in molecular dynamics simulations, a new simulation framework was developed which operated directly within the force domain. Along with a corresponding alpha-helix modelling method, the simulation framework was developed drawing on robotic kinematics to specifically target force interactions. Coordinate frames were used efficiently to compartmentalise the simulation structures and static analysis was applied to determine the propagation of forces and torques through the protein structure. The results of the electrostatic approximation using Coulomb’s law shows a simulated force interaction within the physiological relevant range of 5–40 pN for the rod sub-domains of talin. This covers the range of forces talin operates in and is 2–3 orders of magnitude closer to experimentally measured values than the compared all-atom and coarse-grained molecular dynamics. This targeted, force-based simulation is, therefore, able to produce more realistic forces values than previous simulation methods.</description><subject>631/114</subject><subject>631/114/2397</subject><subject>631/114/470</subject><subject>631/114/663</subject><subject>631/114/794</subject><subject>631/57</subject><subject>631/57/2266</subject><subject>Electrostatic properties</subject><subject>Humanities and Social Sciences</subject><subject>Kinematics</subject><subject>Molecular dynamics</subject><subject>multidisciplinary</subject><subject>Protein structure</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Simulation</subject><subject>Talin</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9UstO3TAQjaqigoAfYFFZ6qabFD9je1MJoT6QkNiUteU4k3t968QXO2nL39cklEIX9cajmTNnZo5OVZ0R_IFgps4zJ0KrGlNSK8UaXbNX1RHFXNSUUfr6WXxYnea8w-UJqjnRb6pDxjSWRKuj6u5iRND33nkYJ2TDfmvRFoL_hYbYQUB27FD2wxzs5OOI-mQH-BnTd9THhPK0ZG26RxDATSkuGYf8OEGybm2JyQGCPPlhQZ9UB70NGU4f_-Pq9vOnb5df6-ubL1eXF9e145pMNZUtEa5xVjlCKCgQUhEQDBTnrJFKEd0KVkJGpOzbTipHoWFgQTHR0pYdV1crbxftzuxTGZ_uTbTeLImYNsamsmwAo5tOWtZ1TYsd56AUOCFbwQXlwAW2hevjyrWf2wE6V7RKNrwgfVkZ_dZs4g-jsNRM8ULw_pEgxbu5iGEGnx2EYEeIczZUEM2IKJcX6Lt_oLs4p7FI9YBSqhwtaUHRFeWK6DlB_7QMwebBIGY1iCkGMYtBDCtNb5-f8dTyxw4FwFZALqVxA-nv7P_Q_gYVvsgN</recordid><startdate>20210427</startdate><enddate>20210427</enddate><creator>Butcher, Guy G.</creator><creator>Harwin, William S.</creator><creator>Jones, Chris I.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20210427</creationdate><title>An efficient alpha helix model and simulation framework for stationary electrostatic interaction force estimation</title><author>Butcher, Guy G. ; Harwin, William S. ; Jones, Chris I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c491t-27b15c6ca8c112e8e5781e53e8443678819b534363177fbd78c2e63eae835b2b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>631/114</topic><topic>631/114/2397</topic><topic>631/114/470</topic><topic>631/114/663</topic><topic>631/114/794</topic><topic>631/57</topic><topic>631/57/2266</topic><topic>Electrostatic properties</topic><topic>Humanities and Social Sciences</topic><topic>Kinematics</topic><topic>Molecular dynamics</topic><topic>multidisciplinary</topic><topic>Protein structure</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Simulation</topic><topic>Talin</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Butcher, Guy G.</creatorcontrib><creatorcontrib>Harwin, William S.</creatorcontrib><creatorcontrib>Jones, Chris I.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>ProQuest Biological Science Journals</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Butcher, Guy G.</au><au>Harwin, William S.</au><au>Jones, Chris I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An efficient alpha helix model and simulation framework for stationary electrostatic interaction force estimation</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2021-04-27</date><risdate>2021</risdate><volume>11</volume><issue>1</issue><spage>9053</spage><epage>9053</epage><pages>9053-9053</pages><artnum>9053</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>The alpha-helix coiled-coils within talin’s rod domain have mechanical and signalling functions through their unfolding and refolding dynamics. A better understanding of talin unfolding events and the forces that are involved should allow better prediction of talin signalling. To overcome the current limitations of force measuring in molecular dynamics simulations, a new simulation framework was developed which operated directly within the force domain. Along with a corresponding alpha-helix modelling method, the simulation framework was developed drawing on robotic kinematics to specifically target force interactions. Coordinate frames were used efficiently to compartmentalise the simulation structures and static analysis was applied to determine the propagation of forces and torques through the protein structure. The results of the electrostatic approximation using Coulomb’s law shows a simulated force interaction within the physiological relevant range of 5–40 pN for the rod sub-domains of talin. This covers the range of forces talin operates in and is 2–3 orders of magnitude closer to experimentally measured values than the compared all-atom and coarse-grained molecular dynamics. This targeted, force-based simulation is, therefore, able to produce more realistic forces values than previous simulation methods.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>33907198</pmid><doi>10.1038/s41598-021-88369-3</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-2322 |
ispartof | Scientific reports, 2021-04, Vol.11 (1), p.9053-9053, Article 9053 |
issn | 2045-2322 2045-2322 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_96d7a3dd6b0c44e88ec57b54524e450a |
source | Publicly Available Content Database; PubMed Central; Free Full-Text Journals in Chemistry; Springer Nature - nature.com Journals - Fully Open Access |
subjects | 631/114 631/114/2397 631/114/470 631/114/663 631/114/794 631/57 631/57/2266 Electrostatic properties Humanities and Social Sciences Kinematics Molecular dynamics multidisciplinary Protein structure Science Science (multidisciplinary) Simulation Talin |
title | An efficient alpha helix model and simulation framework for stationary electrostatic interaction force estimation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T09%3A58%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20efficient%20alpha%20helix%20model%20and%20simulation%20framework%20for%20stationary%20electrostatic%20interaction%20force%20estimation&rft.jtitle=Scientific%20reports&rft.au=Butcher,%20Guy%20G.&rft.date=2021-04-27&rft.volume=11&rft.issue=1&rft.spage=9053&rft.epage=9053&rft.pages=9053-9053&rft.artnum=9053&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-021-88369-3&rft_dat=%3Cproquest_doaj_%3E2518853472%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c491t-27b15c6ca8c112e8e5781e53e8443678819b534363177fbd78c2e63eae835b2b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2518853472&rft_id=info:pmid/33907198&rfr_iscdi=true |