Loading…
Artificial Human Sweat as a Novel Growth Condition for Clinically Relevant Pathogens on Hospital Surfaces
The emergence of biofilms on dry hospital surfaces has led to the development of numerous models designed to challenge the efficacious properties of common antimicrobial agents used in cleaning. This is in spite of limited research defining how dry surfaces are able to facilitate biofilm growth and...
Saved in:
Published in: | Microbiology spectrum 2022-04, Vol.10 (2), p.e0213721-e0213721 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The emergence of biofilms on dry hospital surfaces has led to the development of numerous models designed to challenge the efficacious properties of common antimicrobial agents used in cleaning. This is in spite of limited research defining how dry surfaces are able to facilitate biofilm growth and formation in such desiccating and nutrient-deprived environments. While it is well established that the phenotypical response of biofilms is dependent on the conditions in which they are formed, most models incorporate a nutrient-enriched, hydrated environment dissimilar to the clinical setting. In this study, we piloted a novel culture medium, artificial human sweat (AHS), which is perceived to be more indicative of the nutrient sources available on hospital surfaces, particularly those in close proximity to patients. AHS was capable of sustaining the proliferation of four clinically relevant multidrug-resistant pathogens (Acinetobacter baumannii, Staphylococcus aureus, Enterococcus faecalis, and Pseudomonas aeruginosa) and achieved biofilm formation at concentration levels equivalent to those found
(average, 6.00 log
CFU/cm
) with similar visual characteristics upon microscopy. The AHS model presented here could be used for downstream applications, including efficacy testing of hospital cleaning products, due to its resemblance to clinical biofilms on dry surfaces. This may contribute to a better understanding of the true impact these products have on surface hygiene.
Precise modeling of dry surface biofilms in hospitals is critical for understanding their role in hospital-acquired infection transmission and surface contamination. Using a representative culture condition which includes a nutrient source is key to developing a phenotypically accurate biofilm community. This will enable accurate laboratory testing of cleaning products and their efficacy against dry surface biofilms. |
---|---|
ISSN: | 2165-0497 2165-0497 |
DOI: | 10.1128/spectrum.02137-21 |