Loading…

Evaluation of whey fermented by Enterococcus faecium in consortium with Veilonella parvula in ruminant feeding

The objective of this study was to evaluate the whey fermented by Enterococcus faecium in consortium with Veilonella parvula on the in vitro growth of ruminal bacteria and as a supplement in the cattle diet. In the in vitro experiment, a randomized design, with the following combinations was used: r...

Full description

Saved in:
Bibliographic Details
Published in:Revista brasileira de zootecnia 2012-01, Vol.41 (1), p.172-180
Main Authors: Oliveira, Juliana Silva de, Queiroz, Augusto César de, Mantovani, Hilário Cuquetto, Bayão, Geraldo Fábio Viana, Detmann, Edenio, Santos, Edson Mauro, Silva, Thiago Carvalho da
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The objective of this study was to evaluate the whey fermented by Enterococcus faecium in consortium with Veilonella parvula on the in vitro growth of ruminal bacteria and as a supplement in the cattle diet. In the in vitro experiment, a randomized design, with the following combinations was used: ruminal bacteria; ruminal bacteria and inactive whey; ruminal bacteria and active whey; and active whey. In the in vivo experiment, five fistulated Zebu Holstein-Zebu crossbred heifers were distributed in a 5 × 5 Latin square. Supplements were formulated without the addition of whey, with the addition of two levels of unfermented whey (2.5 and 5 L/day) or two levels of fermented whey (2.5 and 5 L/day). A positive effect of the whey fermentation was detected on the consumption of dry matter, organic matter, crude protein, ether extract, non-fiber carbohydrates and neutral detergent fiber, corrected for ash and protein in kg/day. No effects of whey were observed on the pH and concentration of rumen ammonia nitrogen, serum concentration of urea and glucose, urinary excretion of urea or nutrient digestibility, except for the total digestible nutrients. Supplementation with whey improved the apparent nitrogen balance, but supplementation with fermented whey decreased the intestinal flow of microbial nitrogen and microbial synthesis efficiency in relation to the unfermented whey. The whey fermentation process does not optimize the physiological responses of heifers supplemented with 2.5 and 5.0 L of whey.
ISSN:1516-3598
1806-9290
1516-3598
1806-9290
DOI:10.1590/S1516-35982012000100025