Loading…
Generative and reinforcement learning approaches for the automated de novo design of bioactive compounds
Deep generative neural networks have been used increasingly in computational chemistry for de novo design of molecules with desired properties. Many deep learning approaches employ reinforcement learning for optimizing the target properties of the generated molecules. However, the success of this ap...
Saved in:
Published in: | Communications chemistry 2022-10, Vol.5 (1), p.129-129, Article 129 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c540t-7fe974100a80881469cb3009557c77696afe76752171121f3a9dcbdd1406b3e63 |
---|---|
cites | cdi_FETCH-LOGICAL-c540t-7fe974100a80881469cb3009557c77696afe76752171121f3a9dcbdd1406b3e63 |
container_end_page | 129 |
container_issue | 1 |
container_start_page | 129 |
container_title | Communications chemistry |
container_volume | 5 |
creator | Korshunova, Maria Huang, Niles Capuzzi, Stephen Radchenko, Dmytro S. Savych, Olena Moroz, Yuriy S. Wells, Carrow I. Willson, Timothy M. Tropsha, Alexander Isayev, Olexandr |
description | Deep generative neural networks have been used increasingly in computational chemistry for
de novo
design of molecules with desired properties. Many deep learning approaches employ reinforcement learning for optimizing the target properties of the generated molecules. However, the success of this approach is often hampered by the problem of sparse rewards as the majority of the generated molecules are expectedly predicted as inactives. We propose several technical innovations to address this problem and improve the balance between exploration and exploitation modes in reinforcement learning. In a proof-of-concept study, we demonstrate the application of the deep generative recurrent neural network architecture enhanced by several proposed technical tricks to design inhibitors of the epidermal growth factor (EGFR) and further experimentally validate their potency. The proposed technical solutions are expected to substantially improve the success rate of finding novel bioactive compounds for specific biological targets using generative and reinforcement learning approaches.
Deep generative neural networks are increasingly exploited for drug discovery, but often the majority of generated molecules are predicted to be inactive. Here, an optimized protocol for generative models with reinforcement learning is derived and applied to design potent epidermal growth factor inhibitors. |
doi_str_mv | 10.1038/s42004-022-00733-0 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_97123f24a6fd4773a131d27702fb41bd</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_97123f24a6fd4773a131d27702fb41bd</doaj_id><sourcerecordid>2769996527</sourcerecordid><originalsourceid>FETCH-LOGICAL-c540t-7fe974100a80881469cb3009557c77696afe76752171121f3a9dcbdd1406b3e63</originalsourceid><addsrcrecordid>eNp9kk1v1DAQhiMEolXpH-CALHHhEhjbiR1fkFAFpVIlLnC2HHuSzSqxFztZiX-Psyn9OnAaa-adxzOjtyjeUvhIgTefUsUAqhIYKwEk5yW8KM4ZV6rkQqiXj95nxWVKewBgQLmUzevibE1LVbPzYneNHqOZhyMS4x2JOPguRIsT-pmMaKIffE_M4RCDsTtMJFfJvMvqZQ6TmdERh8SHY8gxDb0noSPtkMUnpg3TISzepTfFq86MCS_v4kXx69vXn1ffy9sf1zdXX25LW1cwl7JDJSsKYBpoGloJZVsOoOpaWimFEqZDKWTNqKSU0Y4b5WzrHK1AtBwFvyhuNq4LZq8PcZhM_KODGfQpEWKvTZwHO6JWkjLescqIzlVSckM5dUxKYF1b0dZl1ueNdVjaCZ3NJ4lmfAJ9WvHDTvfhqNU6eS0z4MMdIIbfC6ZZT0OyOI7GY1iSZnkjpUTNVun7Z9J9WKLPp8oqVkvWKFi3Y5vKxpBSxO5-GAp69YXefKGzL_TJFxpy07vHa9y3_HNBFvBNkHLJ9xgf_v4P9i_Z7sMY</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2725728906</pqid></control><display><type>article</type><title>Generative and reinforcement learning approaches for the automated de novo design of bioactive compounds</title><source>Publicly Available Content Database</source><source>PubMed</source><source>Coronavirus Research Database</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Korshunova, Maria ; Huang, Niles ; Capuzzi, Stephen ; Radchenko, Dmytro S. ; Savych, Olena ; Moroz, Yuriy S. ; Wells, Carrow I. ; Willson, Timothy M. ; Tropsha, Alexander ; Isayev, Olexandr</creator><creatorcontrib>Korshunova, Maria ; Huang, Niles ; Capuzzi, Stephen ; Radchenko, Dmytro S. ; Savych, Olena ; Moroz, Yuriy S. ; Wells, Carrow I. ; Willson, Timothy M. ; Tropsha, Alexander ; Isayev, Olexandr</creatorcontrib><description>Deep generative neural networks have been used increasingly in computational chemistry for
de novo
design of molecules with desired properties. Many deep learning approaches employ reinforcement learning for optimizing the target properties of the generated molecules. However, the success of this approach is often hampered by the problem of sparse rewards as the majority of the generated molecules are expectedly predicted as inactives. We propose several technical innovations to address this problem and improve the balance between exploration and exploitation modes in reinforcement learning. In a proof-of-concept study, we demonstrate the application of the deep generative recurrent neural network architecture enhanced by several proposed technical tricks to design inhibitors of the epidermal growth factor (EGFR) and further experimentally validate their potency. The proposed technical solutions are expected to substantially improve the success rate of finding novel bioactive compounds for specific biological targets using generative and reinforcement learning approaches.
Deep generative neural networks are increasingly exploited for drug discovery, but often the majority of generated molecules are predicted to be inactive. Here, an optimized protocol for generative models with reinforcement learning is derived and applied to design potent epidermal growth factor inhibitors.</description><identifier>ISSN: 2399-3669</identifier><identifier>EISSN: 2399-3669</identifier><identifier>DOI: 10.1038/s42004-022-00733-0</identifier><identifier>PMID: 36697952</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/154/309/630 ; 631/92/613 ; Biological activity ; Chemistry ; Chemistry and Materials Science ; Chemistry/Food Science ; Computational chemistry ; Computer architecture ; Deep learning ; Epidermal growth factor ; Growth factors ; Inhibitors ; Neural networks ; Recurrent neural networks</subject><ispartof>Communications chemistry, 2022-10, Vol.5 (1), p.129-129, Article 129</ispartof><rights>The Author(s) 2022</rights><rights>2022. The Author(s).</rights><rights>The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c540t-7fe974100a80881469cb3009557c77696afe76752171121f3a9dcbdd1406b3e63</citedby><cites>FETCH-LOGICAL-c540t-7fe974100a80881469cb3009557c77696afe76752171121f3a9dcbdd1406b3e63</cites><orcidid>0000-0001-5444-7754 ; 0000-0001-7581-8497 ; 0000-0003-4181-8223 ; 0000-0003-3802-8896 ; 0000-0003-4391-8228</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9814657/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2725728906?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25751,27922,27923,37010,37011,38514,43893,44588,53789,53791</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36697952$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Korshunova, Maria</creatorcontrib><creatorcontrib>Huang, Niles</creatorcontrib><creatorcontrib>Capuzzi, Stephen</creatorcontrib><creatorcontrib>Radchenko, Dmytro S.</creatorcontrib><creatorcontrib>Savych, Olena</creatorcontrib><creatorcontrib>Moroz, Yuriy S.</creatorcontrib><creatorcontrib>Wells, Carrow I.</creatorcontrib><creatorcontrib>Willson, Timothy M.</creatorcontrib><creatorcontrib>Tropsha, Alexander</creatorcontrib><creatorcontrib>Isayev, Olexandr</creatorcontrib><title>Generative and reinforcement learning approaches for the automated de novo design of bioactive compounds</title><title>Communications chemistry</title><addtitle>Commun Chem</addtitle><addtitle>Commun Chem</addtitle><description>Deep generative neural networks have been used increasingly in computational chemistry for
de novo
design of molecules with desired properties. Many deep learning approaches employ reinforcement learning for optimizing the target properties of the generated molecules. However, the success of this approach is often hampered by the problem of sparse rewards as the majority of the generated molecules are expectedly predicted as inactives. We propose several technical innovations to address this problem and improve the balance between exploration and exploitation modes in reinforcement learning. In a proof-of-concept study, we demonstrate the application of the deep generative recurrent neural network architecture enhanced by several proposed technical tricks to design inhibitors of the epidermal growth factor (EGFR) and further experimentally validate their potency. The proposed technical solutions are expected to substantially improve the success rate of finding novel bioactive compounds for specific biological targets using generative and reinforcement learning approaches.
Deep generative neural networks are increasingly exploited for drug discovery, but often the majority of generated molecules are predicted to be inactive. Here, an optimized protocol for generative models with reinforcement learning is derived and applied to design potent epidermal growth factor inhibitors.</description><subject>631/154/309/630</subject><subject>631/92/613</subject><subject>Biological activity</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Chemistry/Food Science</subject><subject>Computational chemistry</subject><subject>Computer architecture</subject><subject>Deep learning</subject><subject>Epidermal growth factor</subject><subject>Growth factors</subject><subject>Inhibitors</subject><subject>Neural networks</subject><subject>Recurrent neural networks</subject><issn>2399-3669</issn><issn>2399-3669</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>COVID</sourceid><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kk1v1DAQhiMEolXpH-CALHHhEhjbiR1fkFAFpVIlLnC2HHuSzSqxFztZiX-Psyn9OnAaa-adxzOjtyjeUvhIgTefUsUAqhIYKwEk5yW8KM4ZV6rkQqiXj95nxWVKewBgQLmUzevibE1LVbPzYneNHqOZhyMS4x2JOPguRIsT-pmMaKIffE_M4RCDsTtMJFfJvMvqZQ6TmdERh8SHY8gxDb0noSPtkMUnpg3TISzepTfFq86MCS_v4kXx69vXn1ffy9sf1zdXX25LW1cwl7JDJSsKYBpoGloJZVsOoOpaWimFEqZDKWTNqKSU0Y4b5WzrHK1AtBwFvyhuNq4LZq8PcZhM_KODGfQpEWKvTZwHO6JWkjLescqIzlVSckM5dUxKYF1b0dZl1ueNdVjaCZ3NJ4lmfAJ9WvHDTvfhqNU6eS0z4MMdIIbfC6ZZT0OyOI7GY1iSZnkjpUTNVun7Z9J9WKLPp8oqVkvWKFi3Y5vKxpBSxO5-GAp69YXefKGzL_TJFxpy07vHa9y3_HNBFvBNkHLJ9xgf_v4P9i_Z7sMY</recordid><startdate>20221018</startdate><enddate>20221018</enddate><creator>Korshunova, Maria</creator><creator>Huang, Niles</creator><creator>Capuzzi, Stephen</creator><creator>Radchenko, Dmytro S.</creator><creator>Savych, Olena</creator><creator>Moroz, Yuriy S.</creator><creator>Wells, Carrow I.</creator><creator>Willson, Timothy M.</creator><creator>Tropsha, Alexander</creator><creator>Isayev, Olexandr</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>COVID</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-5444-7754</orcidid><orcidid>https://orcid.org/0000-0001-7581-8497</orcidid><orcidid>https://orcid.org/0000-0003-4181-8223</orcidid><orcidid>https://orcid.org/0000-0003-3802-8896</orcidid><orcidid>https://orcid.org/0000-0003-4391-8228</orcidid></search><sort><creationdate>20221018</creationdate><title>Generative and reinforcement learning approaches for the automated de novo design of bioactive compounds</title><author>Korshunova, Maria ; Huang, Niles ; Capuzzi, Stephen ; Radchenko, Dmytro S. ; Savych, Olena ; Moroz, Yuriy S. ; Wells, Carrow I. ; Willson, Timothy M. ; Tropsha, Alexander ; Isayev, Olexandr</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c540t-7fe974100a80881469cb3009557c77696afe76752171121f3a9dcbdd1406b3e63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>631/154/309/630</topic><topic>631/92/613</topic><topic>Biological activity</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Chemistry/Food Science</topic><topic>Computational chemistry</topic><topic>Computer architecture</topic><topic>Deep learning</topic><topic>Epidermal growth factor</topic><topic>Growth factors</topic><topic>Inhibitors</topic><topic>Neural networks</topic><topic>Recurrent neural networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Korshunova, Maria</creatorcontrib><creatorcontrib>Huang, Niles</creatorcontrib><creatorcontrib>Capuzzi, Stephen</creatorcontrib><creatorcontrib>Radchenko, Dmytro S.</creatorcontrib><creatorcontrib>Savych, Olena</creatorcontrib><creatorcontrib>Moroz, Yuriy S.</creatorcontrib><creatorcontrib>Wells, Carrow I.</creatorcontrib><creatorcontrib>Willson, Timothy M.</creatorcontrib><creatorcontrib>Tropsha, Alexander</creatorcontrib><creatorcontrib>Isayev, Olexandr</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Engineering Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Communications chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Korshunova, Maria</au><au>Huang, Niles</au><au>Capuzzi, Stephen</au><au>Radchenko, Dmytro S.</au><au>Savych, Olena</au><au>Moroz, Yuriy S.</au><au>Wells, Carrow I.</au><au>Willson, Timothy M.</au><au>Tropsha, Alexander</au><au>Isayev, Olexandr</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Generative and reinforcement learning approaches for the automated de novo design of bioactive compounds</atitle><jtitle>Communications chemistry</jtitle><stitle>Commun Chem</stitle><addtitle>Commun Chem</addtitle><date>2022-10-18</date><risdate>2022</risdate><volume>5</volume><issue>1</issue><spage>129</spage><epage>129</epage><pages>129-129</pages><artnum>129</artnum><issn>2399-3669</issn><eissn>2399-3669</eissn><abstract>Deep generative neural networks have been used increasingly in computational chemistry for
de novo
design of molecules with desired properties. Many deep learning approaches employ reinforcement learning for optimizing the target properties of the generated molecules. However, the success of this approach is often hampered by the problem of sparse rewards as the majority of the generated molecules are expectedly predicted as inactives. We propose several technical innovations to address this problem and improve the balance between exploration and exploitation modes in reinforcement learning. In a proof-of-concept study, we demonstrate the application of the deep generative recurrent neural network architecture enhanced by several proposed technical tricks to design inhibitors of the epidermal growth factor (EGFR) and further experimentally validate their potency. The proposed technical solutions are expected to substantially improve the success rate of finding novel bioactive compounds for specific biological targets using generative and reinforcement learning approaches.
Deep generative neural networks are increasingly exploited for drug discovery, but often the majority of generated molecules are predicted to be inactive. Here, an optimized protocol for generative models with reinforcement learning is derived and applied to design potent epidermal growth factor inhibitors.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>36697952</pmid><doi>10.1038/s42004-022-00733-0</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-5444-7754</orcidid><orcidid>https://orcid.org/0000-0001-7581-8497</orcidid><orcidid>https://orcid.org/0000-0003-4181-8223</orcidid><orcidid>https://orcid.org/0000-0003-3802-8896</orcidid><orcidid>https://orcid.org/0000-0003-4391-8228</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2399-3669 |
ispartof | Communications chemistry, 2022-10, Vol.5 (1), p.129-129, Article 129 |
issn | 2399-3669 2399-3669 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_97123f24a6fd4773a131d27702fb41bd |
source | Publicly Available Content Database; PubMed; Coronavirus Research Database; Springer Nature - nature.com Journals - Fully Open Access |
subjects | 631/154/309/630 631/92/613 Biological activity Chemistry Chemistry and Materials Science Chemistry/Food Science Computational chemistry Computer architecture Deep learning Epidermal growth factor Growth factors Inhibitors Neural networks Recurrent neural networks |
title | Generative and reinforcement learning approaches for the automated de novo design of bioactive compounds |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T12%3A27%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Generative%20and%20reinforcement%20learning%20approaches%20for%20the%20automated%20de%20novo%20design%20of%20bioactive%20compounds&rft.jtitle=Communications%20chemistry&rft.au=Korshunova,%20Maria&rft.date=2022-10-18&rft.volume=5&rft.issue=1&rft.spage=129&rft.epage=129&rft.pages=129-129&rft.artnum=129&rft.issn=2399-3669&rft.eissn=2399-3669&rft_id=info:doi/10.1038/s42004-022-00733-0&rft_dat=%3Cproquest_doaj_%3E2769996527%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c540t-7fe974100a80881469cb3009557c77696afe76752171121f3a9dcbdd1406b3e63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2725728906&rft_id=info:pmid/36697952&rfr_iscdi=true |