Loading…

Generative and reinforcement learning approaches for the automated de novo design of bioactive compounds

Deep generative neural networks have been used increasingly in computational chemistry for de novo design of molecules with desired properties. Many deep learning approaches employ reinforcement learning for optimizing the target properties of the generated molecules. However, the success of this ap...

Full description

Saved in:
Bibliographic Details
Published in:Communications chemistry 2022-10, Vol.5 (1), p.129-129, Article 129
Main Authors: Korshunova, Maria, Huang, Niles, Capuzzi, Stephen, Radchenko, Dmytro S., Savych, Olena, Moroz, Yuriy S., Wells, Carrow I., Willson, Timothy M., Tropsha, Alexander, Isayev, Olexandr
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c540t-7fe974100a80881469cb3009557c77696afe76752171121f3a9dcbdd1406b3e63
cites cdi_FETCH-LOGICAL-c540t-7fe974100a80881469cb3009557c77696afe76752171121f3a9dcbdd1406b3e63
container_end_page 129
container_issue 1
container_start_page 129
container_title Communications chemistry
container_volume 5
creator Korshunova, Maria
Huang, Niles
Capuzzi, Stephen
Radchenko, Dmytro S.
Savych, Olena
Moroz, Yuriy S.
Wells, Carrow I.
Willson, Timothy M.
Tropsha, Alexander
Isayev, Olexandr
description Deep generative neural networks have been used increasingly in computational chemistry for de novo design of molecules with desired properties. Many deep learning approaches employ reinforcement learning for optimizing the target properties of the generated molecules. However, the success of this approach is often hampered by the problem of sparse rewards as the majority of the generated molecules are expectedly predicted as inactives. We propose several technical innovations to address this problem and improve the balance between exploration and exploitation modes in reinforcement learning. In a proof-of-concept study, we demonstrate the application of the deep generative recurrent neural network architecture enhanced by several proposed technical tricks to design inhibitors of the epidermal growth factor (EGFR) and further experimentally validate their potency. The proposed technical solutions are expected to substantially improve the success rate of finding novel bioactive compounds for specific biological targets using generative and reinforcement learning approaches. Deep generative neural networks are increasingly exploited for drug discovery, but often the majority of generated molecules are predicted to be inactive. Here, an optimized protocol for generative models with reinforcement learning is derived and applied to design potent epidermal growth factor inhibitors.
doi_str_mv 10.1038/s42004-022-00733-0
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_97123f24a6fd4773a131d27702fb41bd</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_97123f24a6fd4773a131d27702fb41bd</doaj_id><sourcerecordid>2769996527</sourcerecordid><originalsourceid>FETCH-LOGICAL-c540t-7fe974100a80881469cb3009557c77696afe76752171121f3a9dcbdd1406b3e63</originalsourceid><addsrcrecordid>eNp9kk1v1DAQhiMEolXpH-CALHHhEhjbiR1fkFAFpVIlLnC2HHuSzSqxFztZiX-Psyn9OnAaa-adxzOjtyjeUvhIgTefUsUAqhIYKwEk5yW8KM4ZV6rkQqiXj95nxWVKewBgQLmUzevibE1LVbPzYneNHqOZhyMS4x2JOPguRIsT-pmMaKIffE_M4RCDsTtMJFfJvMvqZQ6TmdERh8SHY8gxDb0noSPtkMUnpg3TISzepTfFq86MCS_v4kXx69vXn1ffy9sf1zdXX25LW1cwl7JDJSsKYBpoGloJZVsOoOpaWimFEqZDKWTNqKSU0Y4b5WzrHK1AtBwFvyhuNq4LZq8PcZhM_KODGfQpEWKvTZwHO6JWkjLescqIzlVSckM5dUxKYF1b0dZl1ueNdVjaCZ3NJ4lmfAJ9WvHDTvfhqNU6eS0z4MMdIIbfC6ZZT0OyOI7GY1iSZnkjpUTNVun7Z9J9WKLPp8oqVkvWKFi3Y5vKxpBSxO5-GAp69YXefKGzL_TJFxpy07vHa9y3_HNBFvBNkHLJ9xgf_v4P9i_Z7sMY</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2725728906</pqid></control><display><type>article</type><title>Generative and reinforcement learning approaches for the automated de novo design of bioactive compounds</title><source>Publicly Available Content Database</source><source>PubMed</source><source>Coronavirus Research Database</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Korshunova, Maria ; Huang, Niles ; Capuzzi, Stephen ; Radchenko, Dmytro S. ; Savych, Olena ; Moroz, Yuriy S. ; Wells, Carrow I. ; Willson, Timothy M. ; Tropsha, Alexander ; Isayev, Olexandr</creator><creatorcontrib>Korshunova, Maria ; Huang, Niles ; Capuzzi, Stephen ; Radchenko, Dmytro S. ; Savych, Olena ; Moroz, Yuriy S. ; Wells, Carrow I. ; Willson, Timothy M. ; Tropsha, Alexander ; Isayev, Olexandr</creatorcontrib><description>Deep generative neural networks have been used increasingly in computational chemistry for de novo design of molecules with desired properties. Many deep learning approaches employ reinforcement learning for optimizing the target properties of the generated molecules. However, the success of this approach is often hampered by the problem of sparse rewards as the majority of the generated molecules are expectedly predicted as inactives. We propose several technical innovations to address this problem and improve the balance between exploration and exploitation modes in reinforcement learning. In a proof-of-concept study, we demonstrate the application of the deep generative recurrent neural network architecture enhanced by several proposed technical tricks to design inhibitors of the epidermal growth factor (EGFR) and further experimentally validate their potency. The proposed technical solutions are expected to substantially improve the success rate of finding novel bioactive compounds for specific biological targets using generative and reinforcement learning approaches. Deep generative neural networks are increasingly exploited for drug discovery, but often the majority of generated molecules are predicted to be inactive. Here, an optimized protocol for generative models with reinforcement learning is derived and applied to design potent epidermal growth factor inhibitors.</description><identifier>ISSN: 2399-3669</identifier><identifier>EISSN: 2399-3669</identifier><identifier>DOI: 10.1038/s42004-022-00733-0</identifier><identifier>PMID: 36697952</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/154/309/630 ; 631/92/613 ; Biological activity ; Chemistry ; Chemistry and Materials Science ; Chemistry/Food Science ; Computational chemistry ; Computer architecture ; Deep learning ; Epidermal growth factor ; Growth factors ; Inhibitors ; Neural networks ; Recurrent neural networks</subject><ispartof>Communications chemistry, 2022-10, Vol.5 (1), p.129-129, Article 129</ispartof><rights>The Author(s) 2022</rights><rights>2022. The Author(s).</rights><rights>The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c540t-7fe974100a80881469cb3009557c77696afe76752171121f3a9dcbdd1406b3e63</citedby><cites>FETCH-LOGICAL-c540t-7fe974100a80881469cb3009557c77696afe76752171121f3a9dcbdd1406b3e63</cites><orcidid>0000-0001-5444-7754 ; 0000-0001-7581-8497 ; 0000-0003-4181-8223 ; 0000-0003-3802-8896 ; 0000-0003-4391-8228</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9814657/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2725728906?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25751,27922,27923,37010,37011,38514,43893,44588,53789,53791</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36697952$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Korshunova, Maria</creatorcontrib><creatorcontrib>Huang, Niles</creatorcontrib><creatorcontrib>Capuzzi, Stephen</creatorcontrib><creatorcontrib>Radchenko, Dmytro S.</creatorcontrib><creatorcontrib>Savych, Olena</creatorcontrib><creatorcontrib>Moroz, Yuriy S.</creatorcontrib><creatorcontrib>Wells, Carrow I.</creatorcontrib><creatorcontrib>Willson, Timothy M.</creatorcontrib><creatorcontrib>Tropsha, Alexander</creatorcontrib><creatorcontrib>Isayev, Olexandr</creatorcontrib><title>Generative and reinforcement learning approaches for the automated de novo design of bioactive compounds</title><title>Communications chemistry</title><addtitle>Commun Chem</addtitle><addtitle>Commun Chem</addtitle><description>Deep generative neural networks have been used increasingly in computational chemistry for de novo design of molecules with desired properties. Many deep learning approaches employ reinforcement learning for optimizing the target properties of the generated molecules. However, the success of this approach is often hampered by the problem of sparse rewards as the majority of the generated molecules are expectedly predicted as inactives. We propose several technical innovations to address this problem and improve the balance between exploration and exploitation modes in reinforcement learning. In a proof-of-concept study, we demonstrate the application of the deep generative recurrent neural network architecture enhanced by several proposed technical tricks to design inhibitors of the epidermal growth factor (EGFR) and further experimentally validate their potency. The proposed technical solutions are expected to substantially improve the success rate of finding novel bioactive compounds for specific biological targets using generative and reinforcement learning approaches. Deep generative neural networks are increasingly exploited for drug discovery, but often the majority of generated molecules are predicted to be inactive. Here, an optimized protocol for generative models with reinforcement learning is derived and applied to design potent epidermal growth factor inhibitors.</description><subject>631/154/309/630</subject><subject>631/92/613</subject><subject>Biological activity</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Chemistry/Food Science</subject><subject>Computational chemistry</subject><subject>Computer architecture</subject><subject>Deep learning</subject><subject>Epidermal growth factor</subject><subject>Growth factors</subject><subject>Inhibitors</subject><subject>Neural networks</subject><subject>Recurrent neural networks</subject><issn>2399-3669</issn><issn>2399-3669</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>COVID</sourceid><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kk1v1DAQhiMEolXpH-CALHHhEhjbiR1fkFAFpVIlLnC2HHuSzSqxFztZiX-Psyn9OnAaa-adxzOjtyjeUvhIgTefUsUAqhIYKwEk5yW8KM4ZV6rkQqiXj95nxWVKewBgQLmUzevibE1LVbPzYneNHqOZhyMS4x2JOPguRIsT-pmMaKIffE_M4RCDsTtMJFfJvMvqZQ6TmdERh8SHY8gxDb0noSPtkMUnpg3TISzepTfFq86MCS_v4kXx69vXn1ffy9sf1zdXX25LW1cwl7JDJSsKYBpoGloJZVsOoOpaWimFEqZDKWTNqKSU0Y4b5WzrHK1AtBwFvyhuNq4LZq8PcZhM_KODGfQpEWKvTZwHO6JWkjLescqIzlVSckM5dUxKYF1b0dZl1ueNdVjaCZ3NJ4lmfAJ9WvHDTvfhqNU6eS0z4MMdIIbfC6ZZT0OyOI7GY1iSZnkjpUTNVun7Z9J9WKLPp8oqVkvWKFi3Y5vKxpBSxO5-GAp69YXefKGzL_TJFxpy07vHa9y3_HNBFvBNkHLJ9xgf_v4P9i_Z7sMY</recordid><startdate>20221018</startdate><enddate>20221018</enddate><creator>Korshunova, Maria</creator><creator>Huang, Niles</creator><creator>Capuzzi, Stephen</creator><creator>Radchenko, Dmytro S.</creator><creator>Savych, Olena</creator><creator>Moroz, Yuriy S.</creator><creator>Wells, Carrow I.</creator><creator>Willson, Timothy M.</creator><creator>Tropsha, Alexander</creator><creator>Isayev, Olexandr</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>COVID</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-5444-7754</orcidid><orcidid>https://orcid.org/0000-0001-7581-8497</orcidid><orcidid>https://orcid.org/0000-0003-4181-8223</orcidid><orcidid>https://orcid.org/0000-0003-3802-8896</orcidid><orcidid>https://orcid.org/0000-0003-4391-8228</orcidid></search><sort><creationdate>20221018</creationdate><title>Generative and reinforcement learning approaches for the automated de novo design of bioactive compounds</title><author>Korshunova, Maria ; Huang, Niles ; Capuzzi, Stephen ; Radchenko, Dmytro S. ; Savych, Olena ; Moroz, Yuriy S. ; Wells, Carrow I. ; Willson, Timothy M. ; Tropsha, Alexander ; Isayev, Olexandr</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c540t-7fe974100a80881469cb3009557c77696afe76752171121f3a9dcbdd1406b3e63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>631/154/309/630</topic><topic>631/92/613</topic><topic>Biological activity</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Chemistry/Food Science</topic><topic>Computational chemistry</topic><topic>Computer architecture</topic><topic>Deep learning</topic><topic>Epidermal growth factor</topic><topic>Growth factors</topic><topic>Inhibitors</topic><topic>Neural networks</topic><topic>Recurrent neural networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Korshunova, Maria</creatorcontrib><creatorcontrib>Huang, Niles</creatorcontrib><creatorcontrib>Capuzzi, Stephen</creatorcontrib><creatorcontrib>Radchenko, Dmytro S.</creatorcontrib><creatorcontrib>Savych, Olena</creatorcontrib><creatorcontrib>Moroz, Yuriy S.</creatorcontrib><creatorcontrib>Wells, Carrow I.</creatorcontrib><creatorcontrib>Willson, Timothy M.</creatorcontrib><creatorcontrib>Tropsha, Alexander</creatorcontrib><creatorcontrib>Isayev, Olexandr</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Engineering Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Communications chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Korshunova, Maria</au><au>Huang, Niles</au><au>Capuzzi, Stephen</au><au>Radchenko, Dmytro S.</au><au>Savych, Olena</au><au>Moroz, Yuriy S.</au><au>Wells, Carrow I.</au><au>Willson, Timothy M.</au><au>Tropsha, Alexander</au><au>Isayev, Olexandr</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Generative and reinforcement learning approaches for the automated de novo design of bioactive compounds</atitle><jtitle>Communications chemistry</jtitle><stitle>Commun Chem</stitle><addtitle>Commun Chem</addtitle><date>2022-10-18</date><risdate>2022</risdate><volume>5</volume><issue>1</issue><spage>129</spage><epage>129</epage><pages>129-129</pages><artnum>129</artnum><issn>2399-3669</issn><eissn>2399-3669</eissn><abstract>Deep generative neural networks have been used increasingly in computational chemistry for de novo design of molecules with desired properties. Many deep learning approaches employ reinforcement learning for optimizing the target properties of the generated molecules. However, the success of this approach is often hampered by the problem of sparse rewards as the majority of the generated molecules are expectedly predicted as inactives. We propose several technical innovations to address this problem and improve the balance between exploration and exploitation modes in reinforcement learning. In a proof-of-concept study, we demonstrate the application of the deep generative recurrent neural network architecture enhanced by several proposed technical tricks to design inhibitors of the epidermal growth factor (EGFR) and further experimentally validate their potency. The proposed technical solutions are expected to substantially improve the success rate of finding novel bioactive compounds for specific biological targets using generative and reinforcement learning approaches. Deep generative neural networks are increasingly exploited for drug discovery, but often the majority of generated molecules are predicted to be inactive. Here, an optimized protocol for generative models with reinforcement learning is derived and applied to design potent epidermal growth factor inhibitors.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>36697952</pmid><doi>10.1038/s42004-022-00733-0</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-5444-7754</orcidid><orcidid>https://orcid.org/0000-0001-7581-8497</orcidid><orcidid>https://orcid.org/0000-0003-4181-8223</orcidid><orcidid>https://orcid.org/0000-0003-3802-8896</orcidid><orcidid>https://orcid.org/0000-0003-4391-8228</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2399-3669
ispartof Communications chemistry, 2022-10, Vol.5 (1), p.129-129, Article 129
issn 2399-3669
2399-3669
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_97123f24a6fd4773a131d27702fb41bd
source Publicly Available Content Database; PubMed; Coronavirus Research Database; Springer Nature - nature.com Journals - Fully Open Access
subjects 631/154/309/630
631/92/613
Biological activity
Chemistry
Chemistry and Materials Science
Chemistry/Food Science
Computational chemistry
Computer architecture
Deep learning
Epidermal growth factor
Growth factors
Inhibitors
Neural networks
Recurrent neural networks
title Generative and reinforcement learning approaches for the automated de novo design of bioactive compounds
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T12%3A27%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Generative%20and%20reinforcement%20learning%20approaches%20for%20the%20automated%20de%20novo%20design%20of%20bioactive%20compounds&rft.jtitle=Communications%20chemistry&rft.au=Korshunova,%20Maria&rft.date=2022-10-18&rft.volume=5&rft.issue=1&rft.spage=129&rft.epage=129&rft.pages=129-129&rft.artnum=129&rft.issn=2399-3669&rft.eissn=2399-3669&rft_id=info:doi/10.1038/s42004-022-00733-0&rft_dat=%3Cproquest_doaj_%3E2769996527%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c540t-7fe974100a80881469cb3009557c77696afe76752171121f3a9dcbdd1406b3e63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2725728906&rft_id=info:pmid/36697952&rfr_iscdi=true