Loading…
The Blockade of the Transient Receptor Potential Vanilloid Type 1 and Fatty Acid Amide Hydrolase Decreases Symptoms and Central Sequelae in the Medial Prefrontal Cortex of Neuropathic Rats
Background: Neuropathic pain is a chronic disease resulting from dysfunction within the “pain matrix”. The basolateral amygdala (BLA) can modulate cortical functions and interactions between this structure and the medial prefrontal cortex (mPFC) are important for integrating emotionally salient info...
Saved in:
Published in: | Molecular pain 2011-01, Vol.7 (1), p.7-7 |
---|---|
Main Authors: | , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-b764t-b394dc643f7c7076d3dd2f1a7b11876751891b0286be2105fd42d20a5f5708283 |
---|---|
cites | cdi_FETCH-LOGICAL-b764t-b394dc643f7c7076d3dd2f1a7b11876751891b0286be2105fd42d20a5f5708283 |
container_end_page | 7 |
container_issue | 1 |
container_start_page | 7 |
container_title | Molecular pain |
container_volume | 7 |
creator | de Novellis, Vito Vita, Daniela Gatta, Luisa Luongo, Livio Bellini, Giulia De Chiaro, Maria Marabese, Ida Siniscalco, Dario Boccella, Serena Piscitelli, Fabiana Di Marzo, Vincenzo Palazzo, Enza Rossi, Francesco Maione, Sabatino |
description | Background:
Neuropathic pain is a chronic disease resulting from dysfunction within the “pain matrix”. The basolateral amygdala (BLA) can modulate cortical functions and interactions between this structure and the medial prefrontal cortex (mPFC) are important for integrating emotionally salient information. In this study, we have investigated the involvement of the transient receptor potential vanilloid type 1 (TRPV1) and the catabolic enzyme fatty acid amide hydrolase (FAAH) in the morphofunctional changes occurring in the pre-limbic/infra-limbic (PL/IL) cortex in neuropathic rats.
Results:
The effect of N-arachidonoyl-serotonin (AA-5-HT), a hybrid FAAH inhibitor and TPRV1 channel antagonist, was tested on nociceptive behaviour associated with neuropathic pain as well as on some phenotypic changes occurring on PL/IL cortex pyramidal neurons. Those neurons were identified as belonging to the BLA-mPFC pathway by electrical stimulation of the BLA followed by hind-paw pressoceptive stimulus application. Changes in their spontaneous and evoked activity were studied in sham or spared nerve injury (SNI) rats before or after repeated treatment with AA-5-HT. Consistently with the SNI-induced changes in PL/IL cortex neurons which underwent profound phenotypic reorganization, suggesting a profound imbalance between excitatory and inhibitory responses in the mPFC neurons, we found an increase in extracellular glutamate levels, as well as the upregulation of FAAH and TRPV1 in the PL/IL cortex of SNI rats. Daily treatment with AA-5-HT restored cortical neuronal activity, normalizing the electrophysiological changes associated with the peripheral injury of the sciatic nerve. Finally, a single acute intra-PL/IL cortex microinjection of AA-5-HT transiently decreased allodynia more effectively than URB597 or I-RTX, a selective FAAH inhibitor or a TRPV1 blocker, respectively.
Conclusion:
These data suggest a possible involvement of endovanilloids in the cortical plastic changes associated with peripheral nerve injury and indicate that therapies able to normalize endovanilloid transmission may prove useful in ameliorating the symptoms and central sequelae associated with neuropathic pain. |
doi_str_mv | 10.1186/1744-8069-7-7 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_97221936f6af4695870c93b2776cd6a1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A247984732</galeid><sage_id>10.1186_1744-8069-7-7</sage_id><doaj_id>oai_doaj_org_article_97221936f6af4695870c93b2776cd6a1</doaj_id><sourcerecordid>A247984732</sourcerecordid><originalsourceid>FETCH-LOGICAL-b764t-b394dc643f7c7076d3dd2f1a7b11876751891b0286be2105fd42d20a5f5708283</originalsourceid><addsrcrecordid>eNp1k11v0zAUhiMEYmNwyS2y4AIJKcNfsZMbRCmMTRowbYVby7Gd1iOJi-0i-t_4cTjN6FbYlAv72O95fPzmOMueIniIUMleI05pXkJW5Tzn97L9bXz_xnwvexTCJYSEQ4YeZnsYYYoow_vZ79nCgHetU9-lNsA1IKZ45mUfrOkjODfKLKPz4MzFFFvZgm-yt23rrAaz9dIABGSvwZGMcQ0mKq1OOptIx2vtXSuDAe-N8iZNArhYd4nVhU3GNOF8wl2YHyvTSgNsvzn7k9HDKWfeNN71MU2nzkfza6jts1l5t5RxYRU4lzE8zh40sg3mydV4kH09-jCbHuenXz6eTCenec0ZjXlNKqoVo6ThikPONNEaN0jyOjnIGS9QWaEa4pLVBiNYNJpijaEsmoLDEpfkIDsZudrJS7H0tpN-LZy0YrPg_FxIH61qjag4xqgirGGyoawqSg5VRWrMOVOaSZRYb0bWclV3RqvRhh3o7k5vF2LufgoCyfDXEuDtCKituwOwu6NcJ4ZOEEMnCC54Qry8qsG75H6IorNBmbaVvXGrIKqCMgIRZ0n5_B_lpVv5PpktKogJhBQPFb24S4SLipS4QKy8Vs1l8sn2jUvVqeFgMcGUVyXlBCfV4S2q9GnTWeV609i0vpOQjwnKuxBS12ydQFAML-S_uz-76f9W_fdJJMGrURDk3Fzf5HbaHwzVF60</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>902300421</pqid></control><display><type>article</type><title>The Blockade of the Transient Receptor Potential Vanilloid Type 1 and Fatty Acid Amide Hydrolase Decreases Symptoms and Central Sequelae in the Medial Prefrontal Cortex of Neuropathic Rats</title><source>Open Access: PubMed Central</source><source>SAGE Open Access</source><source>Publicly Available Content Database</source><source>Free Full-Text Journals in Chemistry</source><creator>de Novellis, Vito ; Vita, Daniela ; Gatta, Luisa ; Luongo, Livio ; Bellini, Giulia ; De Chiaro, Maria ; Marabese, Ida ; Siniscalco, Dario ; Boccella, Serena ; Piscitelli, Fabiana ; Di Marzo, Vincenzo ; Palazzo, Enza ; Rossi, Francesco ; Maione, Sabatino</creator><creatorcontrib>de Novellis, Vito ; Vita, Daniela ; Gatta, Luisa ; Luongo, Livio ; Bellini, Giulia ; De Chiaro, Maria ; Marabese, Ida ; Siniscalco, Dario ; Boccella, Serena ; Piscitelli, Fabiana ; Di Marzo, Vincenzo ; Palazzo, Enza ; Rossi, Francesco ; Maione, Sabatino</creatorcontrib><description>Background:
Neuropathic pain is a chronic disease resulting from dysfunction within the “pain matrix”. The basolateral amygdala (BLA) can modulate cortical functions and interactions between this structure and the medial prefrontal cortex (mPFC) are important for integrating emotionally salient information. In this study, we have investigated the involvement of the transient receptor potential vanilloid type 1 (TRPV1) and the catabolic enzyme fatty acid amide hydrolase (FAAH) in the morphofunctional changes occurring in the pre-limbic/infra-limbic (PL/IL) cortex in neuropathic rats.
Results:
The effect of N-arachidonoyl-serotonin (AA-5-HT), a hybrid FAAH inhibitor and TPRV1 channel antagonist, was tested on nociceptive behaviour associated with neuropathic pain as well as on some phenotypic changes occurring on PL/IL cortex pyramidal neurons. Those neurons were identified as belonging to the BLA-mPFC pathway by electrical stimulation of the BLA followed by hind-paw pressoceptive stimulus application. Changes in their spontaneous and evoked activity were studied in sham or spared nerve injury (SNI) rats before or after repeated treatment with AA-5-HT. Consistently with the SNI-induced changes in PL/IL cortex neurons which underwent profound phenotypic reorganization, suggesting a profound imbalance between excitatory and inhibitory responses in the mPFC neurons, we found an increase in extracellular glutamate levels, as well as the upregulation of FAAH and TRPV1 in the PL/IL cortex of SNI rats. Daily treatment with AA-5-HT restored cortical neuronal activity, normalizing the electrophysiological changes associated with the peripheral injury of the sciatic nerve. Finally, a single acute intra-PL/IL cortex microinjection of AA-5-HT transiently decreased allodynia more effectively than URB597 or I-RTX, a selective FAAH inhibitor or a TRPV1 blocker, respectively.
Conclusion:
These data suggest a possible involvement of endovanilloids in the cortical plastic changes associated with peripheral nerve injury and indicate that therapies able to normalize endovanilloid transmission may prove useful in ameliorating the symptoms and central sequelae associated with neuropathic pain.</description><identifier>ISSN: 1744-8069</identifier><identifier>EISSN: 1744-8069</identifier><identifier>DOI: 10.1186/1744-8069-7-7</identifier><identifier>PMID: 21241462</identifier><language>eng</language><publisher>Los Angeles, CA: SAGE Publications</publisher><subject><![CDATA[Amidohydrolases - antagonists & inhibitors ; Amidohydrolases - genetics ; Amidohydrolases - metabolism ; Amygdala ; Amygdala - drug effects ; Amygdala - physiopathology ; Animal cognition ; Animals ; Arachidonic Acids - administration & dosage ; Arachidonic Acids - pharmacology ; Back pain ; Behavior ; Benzamides - administration & dosage ; Benzamides - pharmacology ; Capsaicin receptors ; Carbamates - administration & dosage ; Carbamates - pharmacology ; Chronic illnesses ; Complications ; Decision making ; Development and progression ; Electric Stimulation ; Electrical stimuli ; Electrodes ; Electrophysiological Phenomena - drug effects ; Enzymes ; Experiments ; Fatty acids ; Fatty-acid amide hydrolase ; Functional morphology ; Genetic aspects ; Hydrolase ; Hydrolases ; Laboratory animals ; Male ; Microdialysis ; Microinjection ; Microinjections ; Mononeuropathies - enzymology ; Mononeuropathies - pathology ; Mononeuropathies - physiopathology ; Neurons ; Neurons - metabolism ; Neurons - pathology ; Nociceptors - metabolism ; Pain ; Pain perception ; Peripheral nerves ; Peripheral neuropathy ; Physiological aspects ; Piperidines - administration & dosage ; Piperidines - pharmacology ; Plasticity ; Prefrontal cortex ; Prefrontal Cortex - drug effects ; Prefrontal Cortex - enzymology ; Prefrontal Cortex - pathology ; Prefrontal Cortex - physiopathology ; Pyramidal cells ; Pyrazoles - administration & dosage ; Pyrazoles - pharmacology ; Rats ; Rats, Wistar ; Risk factors ; RNA, Messenger - genetics ; RNA, Messenger - metabolism ; Rodents ; Sciatic nerve ; Serotonin ; Serotonin - administration & dosage ; Serotonin - analogs & derivatives ; Serotonin - pharmacology ; Studies ; Surgery ; Transient receptor potential proteins ; TRPV Cation Channels - antagonists & inhibitors ; TRPV Cation Channels - genetics ; TRPV Cation Channels - metabolism]]></subject><ispartof>Molecular pain, 2011-01, Vol.7 (1), p.7-7</ispartof><rights>2011 de Novellis et al</rights><rights>COPYRIGHT 2011 BioMed Central Ltd.</rights><rights>2011 de Novellis et al. This work is licensed under the Creative Commons Attribution License http://creativecommons.org/licenses/by/2.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2011 de Novellis et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</rights><rights>Copyright ©2011 de Novellis et al; licensee BioMed Central Ltd. 2011 de Novellis et al; licensee BioMed Central Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-b764t-b394dc643f7c7076d3dd2f1a7b11876751891b0286be2105fd42d20a5f5708283</citedby><cites>FETCH-LOGICAL-b764t-b394dc643f7c7076d3dd2f1a7b11876751891b0286be2105fd42d20a5f5708283</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3031241/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/902300421?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,21966,25753,27853,27924,27925,37012,37013,44590,44945,45333,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21241462$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>de Novellis, Vito</creatorcontrib><creatorcontrib>Vita, Daniela</creatorcontrib><creatorcontrib>Gatta, Luisa</creatorcontrib><creatorcontrib>Luongo, Livio</creatorcontrib><creatorcontrib>Bellini, Giulia</creatorcontrib><creatorcontrib>De Chiaro, Maria</creatorcontrib><creatorcontrib>Marabese, Ida</creatorcontrib><creatorcontrib>Siniscalco, Dario</creatorcontrib><creatorcontrib>Boccella, Serena</creatorcontrib><creatorcontrib>Piscitelli, Fabiana</creatorcontrib><creatorcontrib>Di Marzo, Vincenzo</creatorcontrib><creatorcontrib>Palazzo, Enza</creatorcontrib><creatorcontrib>Rossi, Francesco</creatorcontrib><creatorcontrib>Maione, Sabatino</creatorcontrib><title>The Blockade of the Transient Receptor Potential Vanilloid Type 1 and Fatty Acid Amide Hydrolase Decreases Symptoms and Central Sequelae in the Medial Prefrontal Cortex of Neuropathic Rats</title><title>Molecular pain</title><addtitle>Mol Pain</addtitle><description>Background:
Neuropathic pain is a chronic disease resulting from dysfunction within the “pain matrix”. The basolateral amygdala (BLA) can modulate cortical functions and interactions between this structure and the medial prefrontal cortex (mPFC) are important for integrating emotionally salient information. In this study, we have investigated the involvement of the transient receptor potential vanilloid type 1 (TRPV1) and the catabolic enzyme fatty acid amide hydrolase (FAAH) in the morphofunctional changes occurring in the pre-limbic/infra-limbic (PL/IL) cortex in neuropathic rats.
Results:
The effect of N-arachidonoyl-serotonin (AA-5-HT), a hybrid FAAH inhibitor and TPRV1 channel antagonist, was tested on nociceptive behaviour associated with neuropathic pain as well as on some phenotypic changes occurring on PL/IL cortex pyramidal neurons. Those neurons were identified as belonging to the BLA-mPFC pathway by electrical stimulation of the BLA followed by hind-paw pressoceptive stimulus application. Changes in their spontaneous and evoked activity were studied in sham or spared nerve injury (SNI) rats before or after repeated treatment with AA-5-HT. Consistently with the SNI-induced changes in PL/IL cortex neurons which underwent profound phenotypic reorganization, suggesting a profound imbalance between excitatory and inhibitory responses in the mPFC neurons, we found an increase in extracellular glutamate levels, as well as the upregulation of FAAH and TRPV1 in the PL/IL cortex of SNI rats. Daily treatment with AA-5-HT restored cortical neuronal activity, normalizing the electrophysiological changes associated with the peripheral injury of the sciatic nerve. Finally, a single acute intra-PL/IL cortex microinjection of AA-5-HT transiently decreased allodynia more effectively than URB597 or I-RTX, a selective FAAH inhibitor or a TRPV1 blocker, respectively.
Conclusion:
These data suggest a possible involvement of endovanilloids in the cortical plastic changes associated with peripheral nerve injury and indicate that therapies able to normalize endovanilloid transmission may prove useful in ameliorating the symptoms and central sequelae associated with neuropathic pain.</description><subject>Amidohydrolases - antagonists & inhibitors</subject><subject>Amidohydrolases - genetics</subject><subject>Amidohydrolases - metabolism</subject><subject>Amygdala</subject><subject>Amygdala - drug effects</subject><subject>Amygdala - physiopathology</subject><subject>Animal cognition</subject><subject>Animals</subject><subject>Arachidonic Acids - administration & dosage</subject><subject>Arachidonic Acids - pharmacology</subject><subject>Back pain</subject><subject>Behavior</subject><subject>Benzamides - administration & dosage</subject><subject>Benzamides - pharmacology</subject><subject>Capsaicin receptors</subject><subject>Carbamates - administration & dosage</subject><subject>Carbamates - pharmacology</subject><subject>Chronic illnesses</subject><subject>Complications</subject><subject>Decision making</subject><subject>Development and progression</subject><subject>Electric Stimulation</subject><subject>Electrical stimuli</subject><subject>Electrodes</subject><subject>Electrophysiological Phenomena - drug effects</subject><subject>Enzymes</subject><subject>Experiments</subject><subject>Fatty acids</subject><subject>Fatty-acid amide hydrolase</subject><subject>Functional morphology</subject><subject>Genetic aspects</subject><subject>Hydrolase</subject><subject>Hydrolases</subject><subject>Laboratory animals</subject><subject>Male</subject><subject>Microdialysis</subject><subject>Microinjection</subject><subject>Microinjections</subject><subject>Mononeuropathies - enzymology</subject><subject>Mononeuropathies - pathology</subject><subject>Mononeuropathies - physiopathology</subject><subject>Neurons</subject><subject>Neurons - metabolism</subject><subject>Neurons - pathology</subject><subject>Nociceptors - metabolism</subject><subject>Pain</subject><subject>Pain perception</subject><subject>Peripheral nerves</subject><subject>Peripheral neuropathy</subject><subject>Physiological aspects</subject><subject>Piperidines - administration & dosage</subject><subject>Piperidines - pharmacology</subject><subject>Plasticity</subject><subject>Prefrontal cortex</subject><subject>Prefrontal Cortex - drug effects</subject><subject>Prefrontal Cortex - enzymology</subject><subject>Prefrontal Cortex - pathology</subject><subject>Prefrontal Cortex - physiopathology</subject><subject>Pyramidal cells</subject><subject>Pyrazoles - administration & dosage</subject><subject>Pyrazoles - pharmacology</subject><subject>Rats</subject><subject>Rats, Wistar</subject><subject>Risk factors</subject><subject>RNA, Messenger - genetics</subject><subject>RNA, Messenger - metabolism</subject><subject>Rodents</subject><subject>Sciatic nerve</subject><subject>Serotonin</subject><subject>Serotonin - administration & dosage</subject><subject>Serotonin - analogs & derivatives</subject><subject>Serotonin - pharmacology</subject><subject>Studies</subject><subject>Surgery</subject><subject>Transient receptor potential proteins</subject><subject>TRPV Cation Channels - antagonists & inhibitors</subject><subject>TRPV Cation Channels - genetics</subject><subject>TRPV Cation Channels - metabolism</subject><issn>1744-8069</issn><issn>1744-8069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>AFRWT</sourceid><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp1k11v0zAUhiMEYmNwyS2y4AIJKcNfsZMbRCmMTRowbYVby7Gd1iOJi-0i-t_4cTjN6FbYlAv72O95fPzmOMueIniIUMleI05pXkJW5Tzn97L9bXz_xnwvexTCJYSEQ4YeZnsYYYoow_vZ79nCgHetU9-lNsA1IKZ45mUfrOkjODfKLKPz4MzFFFvZgm-yt23rrAaz9dIABGSvwZGMcQ0mKq1OOptIx2vtXSuDAe-N8iZNArhYd4nVhU3GNOF8wl2YHyvTSgNsvzn7k9HDKWfeNN71MU2nzkfza6jts1l5t5RxYRU4lzE8zh40sg3mydV4kH09-jCbHuenXz6eTCenec0ZjXlNKqoVo6ThikPONNEaN0jyOjnIGS9QWaEa4pLVBiNYNJpijaEsmoLDEpfkIDsZudrJS7H0tpN-LZy0YrPg_FxIH61qjag4xqgirGGyoawqSg5VRWrMOVOaSZRYb0bWclV3RqvRhh3o7k5vF2LufgoCyfDXEuDtCKituwOwu6NcJ4ZOEEMnCC54Qry8qsG75H6IorNBmbaVvXGrIKqCMgIRZ0n5_B_lpVv5PpktKogJhBQPFb24S4SLipS4QKy8Vs1l8sn2jUvVqeFgMcGUVyXlBCfV4S2q9GnTWeV609i0vpOQjwnKuxBS12ydQFAML-S_uz-76f9W_fdJJMGrURDk3Fzf5HbaHwzVF60</recordid><startdate>20110117</startdate><enddate>20110117</enddate><creator>de Novellis, Vito</creator><creator>Vita, Daniela</creator><creator>Gatta, Luisa</creator><creator>Luongo, Livio</creator><creator>Bellini, Giulia</creator><creator>De Chiaro, Maria</creator><creator>Marabese, Ida</creator><creator>Siniscalco, Dario</creator><creator>Boccella, Serena</creator><creator>Piscitelli, Fabiana</creator><creator>Di Marzo, Vincenzo</creator><creator>Palazzo, Enza</creator><creator>Rossi, Francesco</creator><creator>Maione, Sabatino</creator><general>SAGE Publications</general><general>BioMed Central Ltd</general><general>Sage Publications Ltd</general><general>BioMed Central</general><general>SAGE Publishing</general><scope>AFRWT</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope><scope>K9.</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>M0S</scope><scope>M1P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20110117</creationdate><title>The Blockade of the Transient Receptor Potential Vanilloid Type 1 and Fatty Acid Amide Hydrolase Decreases Symptoms and Central Sequelae in the Medial Prefrontal Cortex of Neuropathic Rats</title><author>de Novellis, Vito ; Vita, Daniela ; Gatta, Luisa ; Luongo, Livio ; Bellini, Giulia ; De Chiaro, Maria ; Marabese, Ida ; Siniscalco, Dario ; Boccella, Serena ; Piscitelli, Fabiana ; Di Marzo, Vincenzo ; Palazzo, Enza ; Rossi, Francesco ; Maione, Sabatino</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-b764t-b394dc643f7c7076d3dd2f1a7b11876751891b0286be2105fd42d20a5f5708283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Amidohydrolases - antagonists & inhibitors</topic><topic>Amidohydrolases - genetics</topic><topic>Amidohydrolases - metabolism</topic><topic>Amygdala</topic><topic>Amygdala - drug effects</topic><topic>Amygdala - physiopathology</topic><topic>Animal cognition</topic><topic>Animals</topic><topic>Arachidonic Acids - administration & dosage</topic><topic>Arachidonic Acids - pharmacology</topic><topic>Back pain</topic><topic>Behavior</topic><topic>Benzamides - administration & dosage</topic><topic>Benzamides - pharmacology</topic><topic>Capsaicin receptors</topic><topic>Carbamates - administration & dosage</topic><topic>Carbamates - pharmacology</topic><topic>Chronic illnesses</topic><topic>Complications</topic><topic>Decision making</topic><topic>Development and progression</topic><topic>Electric Stimulation</topic><topic>Electrical stimuli</topic><topic>Electrodes</topic><topic>Electrophysiological Phenomena - drug effects</topic><topic>Enzymes</topic><topic>Experiments</topic><topic>Fatty acids</topic><topic>Fatty-acid amide hydrolase</topic><topic>Functional morphology</topic><topic>Genetic aspects</topic><topic>Hydrolase</topic><topic>Hydrolases</topic><topic>Laboratory animals</topic><topic>Male</topic><topic>Microdialysis</topic><topic>Microinjection</topic><topic>Microinjections</topic><topic>Mononeuropathies - enzymology</topic><topic>Mononeuropathies - pathology</topic><topic>Mononeuropathies - physiopathology</topic><topic>Neurons</topic><topic>Neurons - metabolism</topic><topic>Neurons - pathology</topic><topic>Nociceptors - metabolism</topic><topic>Pain</topic><topic>Pain perception</topic><topic>Peripheral nerves</topic><topic>Peripheral neuropathy</topic><topic>Physiological aspects</topic><topic>Piperidines - administration & dosage</topic><topic>Piperidines - pharmacology</topic><topic>Plasticity</topic><topic>Prefrontal cortex</topic><topic>Prefrontal Cortex - drug effects</topic><topic>Prefrontal Cortex - enzymology</topic><topic>Prefrontal Cortex - pathology</topic><topic>Prefrontal Cortex - physiopathology</topic><topic>Pyramidal cells</topic><topic>Pyrazoles - administration & dosage</topic><topic>Pyrazoles - pharmacology</topic><topic>Rats</topic><topic>Rats, Wistar</topic><topic>Risk factors</topic><topic>RNA, Messenger - genetics</topic><topic>RNA, Messenger - metabolism</topic><topic>Rodents</topic><topic>Sciatic nerve</topic><topic>Serotonin</topic><topic>Serotonin - administration & dosage</topic><topic>Serotonin - analogs & derivatives</topic><topic>Serotonin - pharmacology</topic><topic>Studies</topic><topic>Surgery</topic><topic>Transient receptor potential proteins</topic><topic>TRPV Cation Channels - antagonists & inhibitors</topic><topic>TRPV Cation Channels - genetics</topic><topic>TRPV Cation Channels - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>de Novellis, Vito</creatorcontrib><creatorcontrib>Vita, Daniela</creatorcontrib><creatorcontrib>Gatta, Luisa</creatorcontrib><creatorcontrib>Luongo, Livio</creatorcontrib><creatorcontrib>Bellini, Giulia</creatorcontrib><creatorcontrib>De Chiaro, Maria</creatorcontrib><creatorcontrib>Marabese, Ida</creatorcontrib><creatorcontrib>Siniscalco, Dario</creatorcontrib><creatorcontrib>Boccella, Serena</creatorcontrib><creatorcontrib>Piscitelli, Fabiana</creatorcontrib><creatorcontrib>Di Marzo, Vincenzo</creatorcontrib><creatorcontrib>Palazzo, Enza</creatorcontrib><creatorcontrib>Rossi, Francesco</creatorcontrib><creatorcontrib>Maione, Sabatino</creatorcontrib><collection>SAGE Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Molecular pain</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>de Novellis, Vito</au><au>Vita, Daniela</au><au>Gatta, Luisa</au><au>Luongo, Livio</au><au>Bellini, Giulia</au><au>De Chiaro, Maria</au><au>Marabese, Ida</au><au>Siniscalco, Dario</au><au>Boccella, Serena</au><au>Piscitelli, Fabiana</au><au>Di Marzo, Vincenzo</au><au>Palazzo, Enza</au><au>Rossi, Francesco</au><au>Maione, Sabatino</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Blockade of the Transient Receptor Potential Vanilloid Type 1 and Fatty Acid Amide Hydrolase Decreases Symptoms and Central Sequelae in the Medial Prefrontal Cortex of Neuropathic Rats</atitle><jtitle>Molecular pain</jtitle><addtitle>Mol Pain</addtitle><date>2011-01-17</date><risdate>2011</risdate><volume>7</volume><issue>1</issue><spage>7</spage><epage>7</epage><pages>7-7</pages><issn>1744-8069</issn><eissn>1744-8069</eissn><abstract>Background:
Neuropathic pain is a chronic disease resulting from dysfunction within the “pain matrix”. The basolateral amygdala (BLA) can modulate cortical functions and interactions between this structure and the medial prefrontal cortex (mPFC) are important for integrating emotionally salient information. In this study, we have investigated the involvement of the transient receptor potential vanilloid type 1 (TRPV1) and the catabolic enzyme fatty acid amide hydrolase (FAAH) in the morphofunctional changes occurring in the pre-limbic/infra-limbic (PL/IL) cortex in neuropathic rats.
Results:
The effect of N-arachidonoyl-serotonin (AA-5-HT), a hybrid FAAH inhibitor and TPRV1 channel antagonist, was tested on nociceptive behaviour associated with neuropathic pain as well as on some phenotypic changes occurring on PL/IL cortex pyramidal neurons. Those neurons were identified as belonging to the BLA-mPFC pathway by electrical stimulation of the BLA followed by hind-paw pressoceptive stimulus application. Changes in their spontaneous and evoked activity were studied in sham or spared nerve injury (SNI) rats before or after repeated treatment with AA-5-HT. Consistently with the SNI-induced changes in PL/IL cortex neurons which underwent profound phenotypic reorganization, suggesting a profound imbalance between excitatory and inhibitory responses in the mPFC neurons, we found an increase in extracellular glutamate levels, as well as the upregulation of FAAH and TRPV1 in the PL/IL cortex of SNI rats. Daily treatment with AA-5-HT restored cortical neuronal activity, normalizing the electrophysiological changes associated with the peripheral injury of the sciatic nerve. Finally, a single acute intra-PL/IL cortex microinjection of AA-5-HT transiently decreased allodynia more effectively than URB597 or I-RTX, a selective FAAH inhibitor or a TRPV1 blocker, respectively.
Conclusion:
These data suggest a possible involvement of endovanilloids in the cortical plastic changes associated with peripheral nerve injury and indicate that therapies able to normalize endovanilloid transmission may prove useful in ameliorating the symptoms and central sequelae associated with neuropathic pain.</abstract><cop>Los Angeles, CA</cop><pub>SAGE Publications</pub><pmid>21241462</pmid><doi>10.1186/1744-8069-7-7</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1744-8069 |
ispartof | Molecular pain, 2011-01, Vol.7 (1), p.7-7 |
issn | 1744-8069 1744-8069 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_97221936f6af4695870c93b2776cd6a1 |
source | Open Access: PubMed Central; SAGE Open Access; Publicly Available Content Database; Free Full-Text Journals in Chemistry |
subjects | Amidohydrolases - antagonists & inhibitors Amidohydrolases - genetics Amidohydrolases - metabolism Amygdala Amygdala - drug effects Amygdala - physiopathology Animal cognition Animals Arachidonic Acids - administration & dosage Arachidonic Acids - pharmacology Back pain Behavior Benzamides - administration & dosage Benzamides - pharmacology Capsaicin receptors Carbamates - administration & dosage Carbamates - pharmacology Chronic illnesses Complications Decision making Development and progression Electric Stimulation Electrical stimuli Electrodes Electrophysiological Phenomena - drug effects Enzymes Experiments Fatty acids Fatty-acid amide hydrolase Functional morphology Genetic aspects Hydrolase Hydrolases Laboratory animals Male Microdialysis Microinjection Microinjections Mononeuropathies - enzymology Mononeuropathies - pathology Mononeuropathies - physiopathology Neurons Neurons - metabolism Neurons - pathology Nociceptors - metabolism Pain Pain perception Peripheral nerves Peripheral neuropathy Physiological aspects Piperidines - administration & dosage Piperidines - pharmacology Plasticity Prefrontal cortex Prefrontal Cortex - drug effects Prefrontal Cortex - enzymology Prefrontal Cortex - pathology Prefrontal Cortex - physiopathology Pyramidal cells Pyrazoles - administration & dosage Pyrazoles - pharmacology Rats Rats, Wistar Risk factors RNA, Messenger - genetics RNA, Messenger - metabolism Rodents Sciatic nerve Serotonin Serotonin - administration & dosage Serotonin - analogs & derivatives Serotonin - pharmacology Studies Surgery Transient receptor potential proteins TRPV Cation Channels - antagonists & inhibitors TRPV Cation Channels - genetics TRPV Cation Channels - metabolism |
title | The Blockade of the Transient Receptor Potential Vanilloid Type 1 and Fatty Acid Amide Hydrolase Decreases Symptoms and Central Sequelae in the Medial Prefrontal Cortex of Neuropathic Rats |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T23%3A34%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Blockade%20of%20the%20Transient%20Receptor%20Potential%20Vanilloid%20Type%201%20and%20Fatty%20Acid%20Amide%20Hydrolase%20Decreases%20Symptoms%20and%20Central%20Sequelae%20in%20the%20Medial%20Prefrontal%20Cortex%20of%20Neuropathic%20Rats&rft.jtitle=Molecular%20pain&rft.au=de%20Novellis,%20Vito&rft.date=2011-01-17&rft.volume=7&rft.issue=1&rft.spage=7&rft.epage=7&rft.pages=7-7&rft.issn=1744-8069&rft.eissn=1744-8069&rft_id=info:doi/10.1186/1744-8069-7-7&rft_dat=%3Cgale_doaj_%3EA247984732%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-b764t-b394dc643f7c7076d3dd2f1a7b11876751891b0286be2105fd42d20a5f5708283%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=902300421&rft_id=info:pmid/21241462&rft_galeid=A247984732&rft_sage_id=10.1186_1744-8069-7-7&rfr_iscdi=true |