Loading…

The Blockade of the Transient Receptor Potential Vanilloid Type 1 and Fatty Acid Amide Hydrolase Decreases Symptoms and Central Sequelae in the Medial Prefrontal Cortex of Neuropathic Rats

Background: Neuropathic pain is a chronic disease resulting from dysfunction within the “pain matrix”. The basolateral amygdala (BLA) can modulate cortical functions and interactions between this structure and the medial prefrontal cortex (mPFC) are important for integrating emotionally salient info...

Full description

Saved in:
Bibliographic Details
Published in:Molecular pain 2011-01, Vol.7 (1), p.7-7
Main Authors: de Novellis, Vito, Vita, Daniela, Gatta, Luisa, Luongo, Livio, Bellini, Giulia, De Chiaro, Maria, Marabese, Ida, Siniscalco, Dario, Boccella, Serena, Piscitelli, Fabiana, Di Marzo, Vincenzo, Palazzo, Enza, Rossi, Francesco, Maione, Sabatino
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-b764t-b394dc643f7c7076d3dd2f1a7b11876751891b0286be2105fd42d20a5f5708283
cites cdi_FETCH-LOGICAL-b764t-b394dc643f7c7076d3dd2f1a7b11876751891b0286be2105fd42d20a5f5708283
container_end_page 7
container_issue 1
container_start_page 7
container_title Molecular pain
container_volume 7
creator de Novellis, Vito
Vita, Daniela
Gatta, Luisa
Luongo, Livio
Bellini, Giulia
De Chiaro, Maria
Marabese, Ida
Siniscalco, Dario
Boccella, Serena
Piscitelli, Fabiana
Di Marzo, Vincenzo
Palazzo, Enza
Rossi, Francesco
Maione, Sabatino
description Background: Neuropathic pain is a chronic disease resulting from dysfunction within the “pain matrix”. The basolateral amygdala (BLA) can modulate cortical functions and interactions between this structure and the medial prefrontal cortex (mPFC) are important for integrating emotionally salient information. In this study, we have investigated the involvement of the transient receptor potential vanilloid type 1 (TRPV1) and the catabolic enzyme fatty acid amide hydrolase (FAAH) in the morphofunctional changes occurring in the pre-limbic/infra-limbic (PL/IL) cortex in neuropathic rats. Results: The effect of N-arachidonoyl-serotonin (AA-5-HT), a hybrid FAAH inhibitor and TPRV1 channel antagonist, was tested on nociceptive behaviour associated with neuropathic pain as well as on some phenotypic changes occurring on PL/IL cortex pyramidal neurons. Those neurons were identified as belonging to the BLA-mPFC pathway by electrical stimulation of the BLA followed by hind-paw pressoceptive stimulus application. Changes in their spontaneous and evoked activity were studied in sham or spared nerve injury (SNI) rats before or after repeated treatment with AA-5-HT. Consistently with the SNI-induced changes in PL/IL cortex neurons which underwent profound phenotypic reorganization, suggesting a profound imbalance between excitatory and inhibitory responses in the mPFC neurons, we found an increase in extracellular glutamate levels, as well as the upregulation of FAAH and TRPV1 in the PL/IL cortex of SNI rats. Daily treatment with AA-5-HT restored cortical neuronal activity, normalizing the electrophysiological changes associated with the peripheral injury of the sciatic nerve. Finally, a single acute intra-PL/IL cortex microinjection of AA-5-HT transiently decreased allodynia more effectively than URB597 or I-RTX, a selective FAAH inhibitor or a TRPV1 blocker, respectively. Conclusion: These data suggest a possible involvement of endovanilloids in the cortical plastic changes associated with peripheral nerve injury and indicate that therapies able to normalize endovanilloid transmission may prove useful in ameliorating the symptoms and central sequelae associated with neuropathic pain.
doi_str_mv 10.1186/1744-8069-7-7
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_97221936f6af4695870c93b2776cd6a1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A247984732</galeid><sage_id>10.1186_1744-8069-7-7</sage_id><doaj_id>oai_doaj_org_article_97221936f6af4695870c93b2776cd6a1</doaj_id><sourcerecordid>A247984732</sourcerecordid><originalsourceid>FETCH-LOGICAL-b764t-b394dc643f7c7076d3dd2f1a7b11876751891b0286be2105fd42d20a5f5708283</originalsourceid><addsrcrecordid>eNp1k11v0zAUhiMEYmNwyS2y4AIJKcNfsZMbRCmMTRowbYVby7Gd1iOJi-0i-t_4cTjN6FbYlAv72O95fPzmOMueIniIUMleI05pXkJW5Tzn97L9bXz_xnwvexTCJYSEQ4YeZnsYYYoow_vZ79nCgHetU9-lNsA1IKZ45mUfrOkjODfKLKPz4MzFFFvZgm-yt23rrAaz9dIABGSvwZGMcQ0mKq1OOptIx2vtXSuDAe-N8iZNArhYd4nVhU3GNOF8wl2YHyvTSgNsvzn7k9HDKWfeNN71MU2nzkfza6jts1l5t5RxYRU4lzE8zh40sg3mydV4kH09-jCbHuenXz6eTCenec0ZjXlNKqoVo6ThikPONNEaN0jyOjnIGS9QWaEa4pLVBiNYNJpijaEsmoLDEpfkIDsZudrJS7H0tpN-LZy0YrPg_FxIH61qjag4xqgirGGyoawqSg5VRWrMOVOaSZRYb0bWclV3RqvRhh3o7k5vF2LufgoCyfDXEuDtCKituwOwu6NcJ4ZOEEMnCC54Qry8qsG75H6IorNBmbaVvXGrIKqCMgIRZ0n5_B_lpVv5PpktKogJhBQPFb24S4SLipS4QKy8Vs1l8sn2jUvVqeFgMcGUVyXlBCfV4S2q9GnTWeV609i0vpOQjwnKuxBS12ydQFAML-S_uz-76f9W_fdJJMGrURDk3Fzf5HbaHwzVF60</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>902300421</pqid></control><display><type>article</type><title>The Blockade of the Transient Receptor Potential Vanilloid Type 1 and Fatty Acid Amide Hydrolase Decreases Symptoms and Central Sequelae in the Medial Prefrontal Cortex of Neuropathic Rats</title><source>Open Access: PubMed Central</source><source>SAGE Open Access</source><source>Publicly Available Content Database</source><source>Free Full-Text Journals in Chemistry</source><creator>de Novellis, Vito ; Vita, Daniela ; Gatta, Luisa ; Luongo, Livio ; Bellini, Giulia ; De Chiaro, Maria ; Marabese, Ida ; Siniscalco, Dario ; Boccella, Serena ; Piscitelli, Fabiana ; Di Marzo, Vincenzo ; Palazzo, Enza ; Rossi, Francesco ; Maione, Sabatino</creator><creatorcontrib>de Novellis, Vito ; Vita, Daniela ; Gatta, Luisa ; Luongo, Livio ; Bellini, Giulia ; De Chiaro, Maria ; Marabese, Ida ; Siniscalco, Dario ; Boccella, Serena ; Piscitelli, Fabiana ; Di Marzo, Vincenzo ; Palazzo, Enza ; Rossi, Francesco ; Maione, Sabatino</creatorcontrib><description>Background: Neuropathic pain is a chronic disease resulting from dysfunction within the “pain matrix”. The basolateral amygdala (BLA) can modulate cortical functions and interactions between this structure and the medial prefrontal cortex (mPFC) are important for integrating emotionally salient information. In this study, we have investigated the involvement of the transient receptor potential vanilloid type 1 (TRPV1) and the catabolic enzyme fatty acid amide hydrolase (FAAH) in the morphofunctional changes occurring in the pre-limbic/infra-limbic (PL/IL) cortex in neuropathic rats. Results: The effect of N-arachidonoyl-serotonin (AA-5-HT), a hybrid FAAH inhibitor and TPRV1 channel antagonist, was tested on nociceptive behaviour associated with neuropathic pain as well as on some phenotypic changes occurring on PL/IL cortex pyramidal neurons. Those neurons were identified as belonging to the BLA-mPFC pathway by electrical stimulation of the BLA followed by hind-paw pressoceptive stimulus application. Changes in their spontaneous and evoked activity were studied in sham or spared nerve injury (SNI) rats before or after repeated treatment with AA-5-HT. Consistently with the SNI-induced changes in PL/IL cortex neurons which underwent profound phenotypic reorganization, suggesting a profound imbalance between excitatory and inhibitory responses in the mPFC neurons, we found an increase in extracellular glutamate levels, as well as the upregulation of FAAH and TRPV1 in the PL/IL cortex of SNI rats. Daily treatment with AA-5-HT restored cortical neuronal activity, normalizing the electrophysiological changes associated with the peripheral injury of the sciatic nerve. Finally, a single acute intra-PL/IL cortex microinjection of AA-5-HT transiently decreased allodynia more effectively than URB597 or I-RTX, a selective FAAH inhibitor or a TRPV1 blocker, respectively. Conclusion: These data suggest a possible involvement of endovanilloids in the cortical plastic changes associated with peripheral nerve injury and indicate that therapies able to normalize endovanilloid transmission may prove useful in ameliorating the symptoms and central sequelae associated with neuropathic pain.</description><identifier>ISSN: 1744-8069</identifier><identifier>EISSN: 1744-8069</identifier><identifier>DOI: 10.1186/1744-8069-7-7</identifier><identifier>PMID: 21241462</identifier><language>eng</language><publisher>Los Angeles, CA: SAGE Publications</publisher><subject><![CDATA[Amidohydrolases - antagonists & inhibitors ; Amidohydrolases - genetics ; Amidohydrolases - metabolism ; Amygdala ; Amygdala - drug effects ; Amygdala - physiopathology ; Animal cognition ; Animals ; Arachidonic Acids - administration & dosage ; Arachidonic Acids - pharmacology ; Back pain ; Behavior ; Benzamides - administration & dosage ; Benzamides - pharmacology ; Capsaicin receptors ; Carbamates - administration & dosage ; Carbamates - pharmacology ; Chronic illnesses ; Complications ; Decision making ; Development and progression ; Electric Stimulation ; Electrical stimuli ; Electrodes ; Electrophysiological Phenomena - drug effects ; Enzymes ; Experiments ; Fatty acids ; Fatty-acid amide hydrolase ; Functional morphology ; Genetic aspects ; Hydrolase ; Hydrolases ; Laboratory animals ; Male ; Microdialysis ; Microinjection ; Microinjections ; Mononeuropathies - enzymology ; Mononeuropathies - pathology ; Mononeuropathies - physiopathology ; Neurons ; Neurons - metabolism ; Neurons - pathology ; Nociceptors - metabolism ; Pain ; Pain perception ; Peripheral nerves ; Peripheral neuropathy ; Physiological aspects ; Piperidines - administration & dosage ; Piperidines - pharmacology ; Plasticity ; Prefrontal cortex ; Prefrontal Cortex - drug effects ; Prefrontal Cortex - enzymology ; Prefrontal Cortex - pathology ; Prefrontal Cortex - physiopathology ; Pyramidal cells ; Pyrazoles - administration & dosage ; Pyrazoles - pharmacology ; Rats ; Rats, Wistar ; Risk factors ; RNA, Messenger - genetics ; RNA, Messenger - metabolism ; Rodents ; Sciatic nerve ; Serotonin ; Serotonin - administration & dosage ; Serotonin - analogs & derivatives ; Serotonin - pharmacology ; Studies ; Surgery ; Transient receptor potential proteins ; TRPV Cation Channels - antagonists & inhibitors ; TRPV Cation Channels - genetics ; TRPV Cation Channels - metabolism]]></subject><ispartof>Molecular pain, 2011-01, Vol.7 (1), p.7-7</ispartof><rights>2011 de Novellis et al</rights><rights>COPYRIGHT 2011 BioMed Central Ltd.</rights><rights>2011 de Novellis et al. This work is licensed under the Creative Commons Attribution License http://creativecommons.org/licenses/by/2.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2011 de Novellis et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</rights><rights>Copyright ©2011 de Novellis et al; licensee BioMed Central Ltd. 2011 de Novellis et al; licensee BioMed Central Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-b764t-b394dc643f7c7076d3dd2f1a7b11876751891b0286be2105fd42d20a5f5708283</citedby><cites>FETCH-LOGICAL-b764t-b394dc643f7c7076d3dd2f1a7b11876751891b0286be2105fd42d20a5f5708283</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3031241/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/902300421?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,21966,25753,27853,27924,27925,37012,37013,44590,44945,45333,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21241462$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>de Novellis, Vito</creatorcontrib><creatorcontrib>Vita, Daniela</creatorcontrib><creatorcontrib>Gatta, Luisa</creatorcontrib><creatorcontrib>Luongo, Livio</creatorcontrib><creatorcontrib>Bellini, Giulia</creatorcontrib><creatorcontrib>De Chiaro, Maria</creatorcontrib><creatorcontrib>Marabese, Ida</creatorcontrib><creatorcontrib>Siniscalco, Dario</creatorcontrib><creatorcontrib>Boccella, Serena</creatorcontrib><creatorcontrib>Piscitelli, Fabiana</creatorcontrib><creatorcontrib>Di Marzo, Vincenzo</creatorcontrib><creatorcontrib>Palazzo, Enza</creatorcontrib><creatorcontrib>Rossi, Francesco</creatorcontrib><creatorcontrib>Maione, Sabatino</creatorcontrib><title>The Blockade of the Transient Receptor Potential Vanilloid Type 1 and Fatty Acid Amide Hydrolase Decreases Symptoms and Central Sequelae in the Medial Prefrontal Cortex of Neuropathic Rats</title><title>Molecular pain</title><addtitle>Mol Pain</addtitle><description>Background: Neuropathic pain is a chronic disease resulting from dysfunction within the “pain matrix”. The basolateral amygdala (BLA) can modulate cortical functions and interactions between this structure and the medial prefrontal cortex (mPFC) are important for integrating emotionally salient information. In this study, we have investigated the involvement of the transient receptor potential vanilloid type 1 (TRPV1) and the catabolic enzyme fatty acid amide hydrolase (FAAH) in the morphofunctional changes occurring in the pre-limbic/infra-limbic (PL/IL) cortex in neuropathic rats. Results: The effect of N-arachidonoyl-serotonin (AA-5-HT), a hybrid FAAH inhibitor and TPRV1 channel antagonist, was tested on nociceptive behaviour associated with neuropathic pain as well as on some phenotypic changes occurring on PL/IL cortex pyramidal neurons. Those neurons were identified as belonging to the BLA-mPFC pathway by electrical stimulation of the BLA followed by hind-paw pressoceptive stimulus application. Changes in their spontaneous and evoked activity were studied in sham or spared nerve injury (SNI) rats before or after repeated treatment with AA-5-HT. Consistently with the SNI-induced changes in PL/IL cortex neurons which underwent profound phenotypic reorganization, suggesting a profound imbalance between excitatory and inhibitory responses in the mPFC neurons, we found an increase in extracellular glutamate levels, as well as the upregulation of FAAH and TRPV1 in the PL/IL cortex of SNI rats. Daily treatment with AA-5-HT restored cortical neuronal activity, normalizing the electrophysiological changes associated with the peripheral injury of the sciatic nerve. Finally, a single acute intra-PL/IL cortex microinjection of AA-5-HT transiently decreased allodynia more effectively than URB597 or I-RTX, a selective FAAH inhibitor or a TRPV1 blocker, respectively. Conclusion: These data suggest a possible involvement of endovanilloids in the cortical plastic changes associated with peripheral nerve injury and indicate that therapies able to normalize endovanilloid transmission may prove useful in ameliorating the symptoms and central sequelae associated with neuropathic pain.</description><subject>Amidohydrolases - antagonists &amp; inhibitors</subject><subject>Amidohydrolases - genetics</subject><subject>Amidohydrolases - metabolism</subject><subject>Amygdala</subject><subject>Amygdala - drug effects</subject><subject>Amygdala - physiopathology</subject><subject>Animal cognition</subject><subject>Animals</subject><subject>Arachidonic Acids - administration &amp; dosage</subject><subject>Arachidonic Acids - pharmacology</subject><subject>Back pain</subject><subject>Behavior</subject><subject>Benzamides - administration &amp; dosage</subject><subject>Benzamides - pharmacology</subject><subject>Capsaicin receptors</subject><subject>Carbamates - administration &amp; dosage</subject><subject>Carbamates - pharmacology</subject><subject>Chronic illnesses</subject><subject>Complications</subject><subject>Decision making</subject><subject>Development and progression</subject><subject>Electric Stimulation</subject><subject>Electrical stimuli</subject><subject>Electrodes</subject><subject>Electrophysiological Phenomena - drug effects</subject><subject>Enzymes</subject><subject>Experiments</subject><subject>Fatty acids</subject><subject>Fatty-acid amide hydrolase</subject><subject>Functional morphology</subject><subject>Genetic aspects</subject><subject>Hydrolase</subject><subject>Hydrolases</subject><subject>Laboratory animals</subject><subject>Male</subject><subject>Microdialysis</subject><subject>Microinjection</subject><subject>Microinjections</subject><subject>Mononeuropathies - enzymology</subject><subject>Mononeuropathies - pathology</subject><subject>Mononeuropathies - physiopathology</subject><subject>Neurons</subject><subject>Neurons - metabolism</subject><subject>Neurons - pathology</subject><subject>Nociceptors - metabolism</subject><subject>Pain</subject><subject>Pain perception</subject><subject>Peripheral nerves</subject><subject>Peripheral neuropathy</subject><subject>Physiological aspects</subject><subject>Piperidines - administration &amp; dosage</subject><subject>Piperidines - pharmacology</subject><subject>Plasticity</subject><subject>Prefrontal cortex</subject><subject>Prefrontal Cortex - drug effects</subject><subject>Prefrontal Cortex - enzymology</subject><subject>Prefrontal Cortex - pathology</subject><subject>Prefrontal Cortex - physiopathology</subject><subject>Pyramidal cells</subject><subject>Pyrazoles - administration &amp; dosage</subject><subject>Pyrazoles - pharmacology</subject><subject>Rats</subject><subject>Rats, Wistar</subject><subject>Risk factors</subject><subject>RNA, Messenger - genetics</subject><subject>RNA, Messenger - metabolism</subject><subject>Rodents</subject><subject>Sciatic nerve</subject><subject>Serotonin</subject><subject>Serotonin - administration &amp; dosage</subject><subject>Serotonin - analogs &amp; derivatives</subject><subject>Serotonin - pharmacology</subject><subject>Studies</subject><subject>Surgery</subject><subject>Transient receptor potential proteins</subject><subject>TRPV Cation Channels - antagonists &amp; inhibitors</subject><subject>TRPV Cation Channels - genetics</subject><subject>TRPV Cation Channels - metabolism</subject><issn>1744-8069</issn><issn>1744-8069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>AFRWT</sourceid><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp1k11v0zAUhiMEYmNwyS2y4AIJKcNfsZMbRCmMTRowbYVby7Gd1iOJi-0i-t_4cTjN6FbYlAv72O95fPzmOMueIniIUMleI05pXkJW5Tzn97L9bXz_xnwvexTCJYSEQ4YeZnsYYYoow_vZ79nCgHetU9-lNsA1IKZ45mUfrOkjODfKLKPz4MzFFFvZgm-yt23rrAaz9dIABGSvwZGMcQ0mKq1OOptIx2vtXSuDAe-N8iZNArhYd4nVhU3GNOF8wl2YHyvTSgNsvzn7k9HDKWfeNN71MU2nzkfza6jts1l5t5RxYRU4lzE8zh40sg3mydV4kH09-jCbHuenXz6eTCenec0ZjXlNKqoVo6ThikPONNEaN0jyOjnIGS9QWaEa4pLVBiNYNJpijaEsmoLDEpfkIDsZudrJS7H0tpN-LZy0YrPg_FxIH61qjag4xqgirGGyoawqSg5VRWrMOVOaSZRYb0bWclV3RqvRhh3o7k5vF2LufgoCyfDXEuDtCKituwOwu6NcJ4ZOEEMnCC54Qry8qsG75H6IorNBmbaVvXGrIKqCMgIRZ0n5_B_lpVv5PpktKogJhBQPFb24S4SLipS4QKy8Vs1l8sn2jUvVqeFgMcGUVyXlBCfV4S2q9GnTWeV609i0vpOQjwnKuxBS12ydQFAML-S_uz-76f9W_fdJJMGrURDk3Fzf5HbaHwzVF60</recordid><startdate>20110117</startdate><enddate>20110117</enddate><creator>de Novellis, Vito</creator><creator>Vita, Daniela</creator><creator>Gatta, Luisa</creator><creator>Luongo, Livio</creator><creator>Bellini, Giulia</creator><creator>De Chiaro, Maria</creator><creator>Marabese, Ida</creator><creator>Siniscalco, Dario</creator><creator>Boccella, Serena</creator><creator>Piscitelli, Fabiana</creator><creator>Di Marzo, Vincenzo</creator><creator>Palazzo, Enza</creator><creator>Rossi, Francesco</creator><creator>Maione, Sabatino</creator><general>SAGE Publications</general><general>BioMed Central Ltd</general><general>Sage Publications Ltd</general><general>BioMed Central</general><general>SAGE Publishing</general><scope>AFRWT</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope><scope>K9.</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>M0S</scope><scope>M1P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20110117</creationdate><title>The Blockade of the Transient Receptor Potential Vanilloid Type 1 and Fatty Acid Amide Hydrolase Decreases Symptoms and Central Sequelae in the Medial Prefrontal Cortex of Neuropathic Rats</title><author>de Novellis, Vito ; Vita, Daniela ; Gatta, Luisa ; Luongo, Livio ; Bellini, Giulia ; De Chiaro, Maria ; Marabese, Ida ; Siniscalco, Dario ; Boccella, Serena ; Piscitelli, Fabiana ; Di Marzo, Vincenzo ; Palazzo, Enza ; Rossi, Francesco ; Maione, Sabatino</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-b764t-b394dc643f7c7076d3dd2f1a7b11876751891b0286be2105fd42d20a5f5708283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Amidohydrolases - antagonists &amp; inhibitors</topic><topic>Amidohydrolases - genetics</topic><topic>Amidohydrolases - metabolism</topic><topic>Amygdala</topic><topic>Amygdala - drug effects</topic><topic>Amygdala - physiopathology</topic><topic>Animal cognition</topic><topic>Animals</topic><topic>Arachidonic Acids - administration &amp; dosage</topic><topic>Arachidonic Acids - pharmacology</topic><topic>Back pain</topic><topic>Behavior</topic><topic>Benzamides - administration &amp; dosage</topic><topic>Benzamides - pharmacology</topic><topic>Capsaicin receptors</topic><topic>Carbamates - administration &amp; dosage</topic><topic>Carbamates - pharmacology</topic><topic>Chronic illnesses</topic><topic>Complications</topic><topic>Decision making</topic><topic>Development and progression</topic><topic>Electric Stimulation</topic><topic>Electrical stimuli</topic><topic>Electrodes</topic><topic>Electrophysiological Phenomena - drug effects</topic><topic>Enzymes</topic><topic>Experiments</topic><topic>Fatty acids</topic><topic>Fatty-acid amide hydrolase</topic><topic>Functional morphology</topic><topic>Genetic aspects</topic><topic>Hydrolase</topic><topic>Hydrolases</topic><topic>Laboratory animals</topic><topic>Male</topic><topic>Microdialysis</topic><topic>Microinjection</topic><topic>Microinjections</topic><topic>Mononeuropathies - enzymology</topic><topic>Mononeuropathies - pathology</topic><topic>Mononeuropathies - physiopathology</topic><topic>Neurons</topic><topic>Neurons - metabolism</topic><topic>Neurons - pathology</topic><topic>Nociceptors - metabolism</topic><topic>Pain</topic><topic>Pain perception</topic><topic>Peripheral nerves</topic><topic>Peripheral neuropathy</topic><topic>Physiological aspects</topic><topic>Piperidines - administration &amp; dosage</topic><topic>Piperidines - pharmacology</topic><topic>Plasticity</topic><topic>Prefrontal cortex</topic><topic>Prefrontal Cortex - drug effects</topic><topic>Prefrontal Cortex - enzymology</topic><topic>Prefrontal Cortex - pathology</topic><topic>Prefrontal Cortex - physiopathology</topic><topic>Pyramidal cells</topic><topic>Pyrazoles - administration &amp; dosage</topic><topic>Pyrazoles - pharmacology</topic><topic>Rats</topic><topic>Rats, Wistar</topic><topic>Risk factors</topic><topic>RNA, Messenger - genetics</topic><topic>RNA, Messenger - metabolism</topic><topic>Rodents</topic><topic>Sciatic nerve</topic><topic>Serotonin</topic><topic>Serotonin - administration &amp; dosage</topic><topic>Serotonin - analogs &amp; derivatives</topic><topic>Serotonin - pharmacology</topic><topic>Studies</topic><topic>Surgery</topic><topic>Transient receptor potential proteins</topic><topic>TRPV Cation Channels - antagonists &amp; inhibitors</topic><topic>TRPV Cation Channels - genetics</topic><topic>TRPV Cation Channels - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>de Novellis, Vito</creatorcontrib><creatorcontrib>Vita, Daniela</creatorcontrib><creatorcontrib>Gatta, Luisa</creatorcontrib><creatorcontrib>Luongo, Livio</creatorcontrib><creatorcontrib>Bellini, Giulia</creatorcontrib><creatorcontrib>De Chiaro, Maria</creatorcontrib><creatorcontrib>Marabese, Ida</creatorcontrib><creatorcontrib>Siniscalco, Dario</creatorcontrib><creatorcontrib>Boccella, Serena</creatorcontrib><creatorcontrib>Piscitelli, Fabiana</creatorcontrib><creatorcontrib>Di Marzo, Vincenzo</creatorcontrib><creatorcontrib>Palazzo, Enza</creatorcontrib><creatorcontrib>Rossi, Francesco</creatorcontrib><creatorcontrib>Maione, Sabatino</creatorcontrib><collection>SAGE Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Molecular pain</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>de Novellis, Vito</au><au>Vita, Daniela</au><au>Gatta, Luisa</au><au>Luongo, Livio</au><au>Bellini, Giulia</au><au>De Chiaro, Maria</au><au>Marabese, Ida</au><au>Siniscalco, Dario</au><au>Boccella, Serena</au><au>Piscitelli, Fabiana</au><au>Di Marzo, Vincenzo</au><au>Palazzo, Enza</au><au>Rossi, Francesco</au><au>Maione, Sabatino</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Blockade of the Transient Receptor Potential Vanilloid Type 1 and Fatty Acid Amide Hydrolase Decreases Symptoms and Central Sequelae in the Medial Prefrontal Cortex of Neuropathic Rats</atitle><jtitle>Molecular pain</jtitle><addtitle>Mol Pain</addtitle><date>2011-01-17</date><risdate>2011</risdate><volume>7</volume><issue>1</issue><spage>7</spage><epage>7</epage><pages>7-7</pages><issn>1744-8069</issn><eissn>1744-8069</eissn><abstract>Background: Neuropathic pain is a chronic disease resulting from dysfunction within the “pain matrix”. The basolateral amygdala (BLA) can modulate cortical functions and interactions between this structure and the medial prefrontal cortex (mPFC) are important for integrating emotionally salient information. In this study, we have investigated the involvement of the transient receptor potential vanilloid type 1 (TRPV1) and the catabolic enzyme fatty acid amide hydrolase (FAAH) in the morphofunctional changes occurring in the pre-limbic/infra-limbic (PL/IL) cortex in neuropathic rats. Results: The effect of N-arachidonoyl-serotonin (AA-5-HT), a hybrid FAAH inhibitor and TPRV1 channel antagonist, was tested on nociceptive behaviour associated with neuropathic pain as well as on some phenotypic changes occurring on PL/IL cortex pyramidal neurons. Those neurons were identified as belonging to the BLA-mPFC pathway by electrical stimulation of the BLA followed by hind-paw pressoceptive stimulus application. Changes in their spontaneous and evoked activity were studied in sham or spared nerve injury (SNI) rats before or after repeated treatment with AA-5-HT. Consistently with the SNI-induced changes in PL/IL cortex neurons which underwent profound phenotypic reorganization, suggesting a profound imbalance between excitatory and inhibitory responses in the mPFC neurons, we found an increase in extracellular glutamate levels, as well as the upregulation of FAAH and TRPV1 in the PL/IL cortex of SNI rats. Daily treatment with AA-5-HT restored cortical neuronal activity, normalizing the electrophysiological changes associated with the peripheral injury of the sciatic nerve. Finally, a single acute intra-PL/IL cortex microinjection of AA-5-HT transiently decreased allodynia more effectively than URB597 or I-RTX, a selective FAAH inhibitor or a TRPV1 blocker, respectively. Conclusion: These data suggest a possible involvement of endovanilloids in the cortical plastic changes associated with peripheral nerve injury and indicate that therapies able to normalize endovanilloid transmission may prove useful in ameliorating the symptoms and central sequelae associated with neuropathic pain.</abstract><cop>Los Angeles, CA</cop><pub>SAGE Publications</pub><pmid>21241462</pmid><doi>10.1186/1744-8069-7-7</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1744-8069
ispartof Molecular pain, 2011-01, Vol.7 (1), p.7-7
issn 1744-8069
1744-8069
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_97221936f6af4695870c93b2776cd6a1
source Open Access: PubMed Central; SAGE Open Access; Publicly Available Content Database; Free Full-Text Journals in Chemistry
subjects Amidohydrolases - antagonists & inhibitors
Amidohydrolases - genetics
Amidohydrolases - metabolism
Amygdala
Amygdala - drug effects
Amygdala - physiopathology
Animal cognition
Animals
Arachidonic Acids - administration & dosage
Arachidonic Acids - pharmacology
Back pain
Behavior
Benzamides - administration & dosage
Benzamides - pharmacology
Capsaicin receptors
Carbamates - administration & dosage
Carbamates - pharmacology
Chronic illnesses
Complications
Decision making
Development and progression
Electric Stimulation
Electrical stimuli
Electrodes
Electrophysiological Phenomena - drug effects
Enzymes
Experiments
Fatty acids
Fatty-acid amide hydrolase
Functional morphology
Genetic aspects
Hydrolase
Hydrolases
Laboratory animals
Male
Microdialysis
Microinjection
Microinjections
Mononeuropathies - enzymology
Mononeuropathies - pathology
Mononeuropathies - physiopathology
Neurons
Neurons - metabolism
Neurons - pathology
Nociceptors - metabolism
Pain
Pain perception
Peripheral nerves
Peripheral neuropathy
Physiological aspects
Piperidines - administration & dosage
Piperidines - pharmacology
Plasticity
Prefrontal cortex
Prefrontal Cortex - drug effects
Prefrontal Cortex - enzymology
Prefrontal Cortex - pathology
Prefrontal Cortex - physiopathology
Pyramidal cells
Pyrazoles - administration & dosage
Pyrazoles - pharmacology
Rats
Rats, Wistar
Risk factors
RNA, Messenger - genetics
RNA, Messenger - metabolism
Rodents
Sciatic nerve
Serotonin
Serotonin - administration & dosage
Serotonin - analogs & derivatives
Serotonin - pharmacology
Studies
Surgery
Transient receptor potential proteins
TRPV Cation Channels - antagonists & inhibitors
TRPV Cation Channels - genetics
TRPV Cation Channels - metabolism
title The Blockade of the Transient Receptor Potential Vanilloid Type 1 and Fatty Acid Amide Hydrolase Decreases Symptoms and Central Sequelae in the Medial Prefrontal Cortex of Neuropathic Rats
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T23%3A34%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Blockade%20of%20the%20Transient%20Receptor%20Potential%20Vanilloid%20Type%201%20and%20Fatty%20Acid%20Amide%20Hydrolase%20Decreases%20Symptoms%20and%20Central%20Sequelae%20in%20the%20Medial%20Prefrontal%20Cortex%20of%20Neuropathic%20Rats&rft.jtitle=Molecular%20pain&rft.au=de%20Novellis,%20Vito&rft.date=2011-01-17&rft.volume=7&rft.issue=1&rft.spage=7&rft.epage=7&rft.pages=7-7&rft.issn=1744-8069&rft.eissn=1744-8069&rft_id=info:doi/10.1186/1744-8069-7-7&rft_dat=%3Cgale_doaj_%3EA247984732%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-b764t-b394dc643f7c7076d3dd2f1a7b11876751891b0286be2105fd42d20a5f5708283%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=902300421&rft_id=info:pmid/21241462&rft_galeid=A247984732&rft_sage_id=10.1186_1744-8069-7-7&rfr_iscdi=true