Loading…

Towards Accurate Identification of Antibiotic-Resistant Pathogens through the Ensemble of Multiple Preprocessing Methods Based on MALDI-TOF Spectra

Matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry (MS) has been used to identify microorganisms and predict antibiotic resistance. The preprocessing method for the MS spectrum is key to extracting critical information from complicated MS spectral data. Differen...

Full description

Saved in:
Bibliographic Details
Published in:International journal of molecular sciences 2023-01, Vol.24 (2), p.998
Main Authors: Chung, Chia-Ru, Wang, Hsin-Yao, Chou, Po-Han, Wu, Li-Ching, Lu, Jang-Jih, Horng, Jorng-Tzong, Lee, Tzong-Yi
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c478t-b9f8f1dca8932df8f06992747350c98f40d3b3909434a955d5e327d28678b03a3
cites cdi_FETCH-LOGICAL-c478t-b9f8f1dca8932df8f06992747350c98f40d3b3909434a955d5e327d28678b03a3
container_end_page
container_issue 2
container_start_page 998
container_title International journal of molecular sciences
container_volume 24
creator Chung, Chia-Ru
Wang, Hsin-Yao
Chou, Po-Han
Wu, Li-Ching
Lu, Jang-Jih
Horng, Jorng-Tzong
Lee, Tzong-Yi
description Matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry (MS) has been used to identify microorganisms and predict antibiotic resistance. The preprocessing method for the MS spectrum is key to extracting critical information from complicated MS spectral data. Different preprocessing methods yield different data, and the optimal approach is unclear. In this study, we adopted an ensemble of multiple preprocessing methods--FlexAnalysis, MALDIquant, and continuous wavelet transform-based methods--to detect peaks and build machine learning classifiers, including logistic regressions, naïve Bayes classifiers, random forests, and a support vector machine. The aim was to identify antibiotic resistance in , , , and Group B (GBS) based on MALDI-TOF MS spectra collected from two branches of a referral tertiary medical center. The ensemble method was compared with the individual methods. Random forest models built with the data preprocessed by the ensemble method outperformed individual preprocessing methods and achieved the highest accuracy, with values of 84.37% ( ), 90.96% ( ), 78.54% ( ), and 70.12% (GBS) on independent testing datasets. Through feature selection, important peaks related to antibiotic resistance could be detected from integrated information. The prediction model can provide an opinion for clinicians. The discriminative peaks enabling better prediction performance can provide a reference for further investigation of the resistance mechanism.
doi_str_mv 10.3390/ijms24020998
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_972cfd3736fb4cf88ad27b30b265c9a5</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_972cfd3736fb4cf88ad27b30b265c9a5</doaj_id><sourcerecordid>2767229078</sourcerecordid><originalsourceid>FETCH-LOGICAL-c478t-b9f8f1dca8932df8f06992747350c98f40d3b3909434a955d5e327d28678b03a3</originalsourceid><addsrcrecordid>eNpdUk2P0zAQtRCIXQo3zigSFw4EHNuJ7QtSWXahUqtdQTlbjj9SV0mctR0Qv4M_jEuXVZfTjMdv3nieHwAvK_gOYw7fu_0QEYEIcs4egfOKIFRC2NDHJ_kZeBbjHkKEUc2fgjPcNJTUFTkHv7f-pww6Fkul5iCTKVbajMlZp2Ryfiy8LZb53DqfnCq_muhikmMqbmTa-c6MsUi74Odul6MpLsdohrY3h7bN3Cc35fwmmCl4ZWJ0Y1dsTG7MAz_KaHSRJ2yW60-rcnt9VXybjEpBPgdPrOyjeXEXF-D71eX24ku5vv68uliuS0UoS2XLLbOVVpJxjHTOYcM5ooTiGirOLIEat1khTjCRvK51bTCiGrGGshZiiRdgdeTVXu7FFNwgwy_hpRN_Cz50Qoa8dW8Ep0hZjSlubEuUZUxqRFsMW9TUiss6c304ck1zOxitsoZB9g9IH96Mbic6_0Nw1tSQVpngzR1B8LeziUkMLirT93I0fo4C0Ybl72vyegvw-j_o3s9hzFIdUBQhDinLqLdHlAo-xmDs_WMqKA7OEafOyfBXpwvcg_9ZBf8B9ynAlA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2767229078</pqid></control><display><type>article</type><title>Towards Accurate Identification of Antibiotic-Resistant Pathogens through the Ensemble of Multiple Preprocessing Methods Based on MALDI-TOF Spectra</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>PubMed Central Free</source><creator>Chung, Chia-Ru ; Wang, Hsin-Yao ; Chou, Po-Han ; Wu, Li-Ching ; Lu, Jang-Jih ; Horng, Jorng-Tzong ; Lee, Tzong-Yi</creator><creatorcontrib>Chung, Chia-Ru ; Wang, Hsin-Yao ; Chou, Po-Han ; Wu, Li-Ching ; Lu, Jang-Jih ; Horng, Jorng-Tzong ; Lee, Tzong-Yi</creatorcontrib><description>Matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry (MS) has been used to identify microorganisms and predict antibiotic resistance. The preprocessing method for the MS spectrum is key to extracting critical information from complicated MS spectral data. Different preprocessing methods yield different data, and the optimal approach is unclear. In this study, we adopted an ensemble of multiple preprocessing methods--FlexAnalysis, MALDIquant, and continuous wavelet transform-based methods--to detect peaks and build machine learning classifiers, including logistic regressions, naïve Bayes classifiers, random forests, and a support vector machine. The aim was to identify antibiotic resistance in , , , and Group B (GBS) based on MALDI-TOF MS spectra collected from two branches of a referral tertiary medical center. The ensemble method was compared with the individual methods. Random forest models built with the data preprocessed by the ensemble method outperformed individual preprocessing methods and achieved the highest accuracy, with values of 84.37% ( ), 90.96% ( ), 78.54% ( ), and 70.12% (GBS) on independent testing datasets. Through feature selection, important peaks related to antibiotic resistance could be detected from integrated information. The prediction model can provide an opinion for clinicians. The discriminative peaks enabling better prediction performance can provide a reference for further investigation of the resistance mechanism.</description><identifier>ISSN: 1422-0067</identifier><identifier>ISSN: 1661-6596</identifier><identifier>EISSN: 1422-0067</identifier><identifier>DOI: 10.3390/ijms24020998</identifier><identifier>PMID: 36674514</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Accuracy ; Acinetobacter baumannii - chemistry ; Acinetobacter Infections ; Algorithms ; Anti-Bacterial Agents - pharmacology ; Antibiotic resistance ; Antibiotics ; Bacteria ; Bacterial infections ; Bayes Theorem ; Bayesian analysis ; Classification ; Continuous wavelet transform ; Drug resistance ; Feature selection ; Health care facilities ; Humans ; Ions ; Laboratories ; Machine learning ; MALDI-TOF MS ; Mass spectrometry ; Mass spectroscopy ; Methods ; Microorganisms ; Open source software ; Peptides ; Prediction models ; Preprocessing ; Spectra ; Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization - methods ; Support vector machines ; Wavelet transforms</subject><ispartof>International journal of molecular sciences, 2023-01, Vol.24 (2), p.998</ispartof><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2023 by the authors. 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c478t-b9f8f1dca8932df8f06992747350c98f40d3b3909434a955d5e327d28678b03a3</citedby><cites>FETCH-LOGICAL-c478t-b9f8f1dca8932df8f06992747350c98f40d3b3909434a955d5e327d28678b03a3</cites><orcidid>0000-0002-4548-7620 ; 0000-0002-6323-4555 ; 0000-0001-5581-6793 ; 0000-0001-8475-7868</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2767229078/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2767229078?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36674514$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chung, Chia-Ru</creatorcontrib><creatorcontrib>Wang, Hsin-Yao</creatorcontrib><creatorcontrib>Chou, Po-Han</creatorcontrib><creatorcontrib>Wu, Li-Ching</creatorcontrib><creatorcontrib>Lu, Jang-Jih</creatorcontrib><creatorcontrib>Horng, Jorng-Tzong</creatorcontrib><creatorcontrib>Lee, Tzong-Yi</creatorcontrib><title>Towards Accurate Identification of Antibiotic-Resistant Pathogens through the Ensemble of Multiple Preprocessing Methods Based on MALDI-TOF Spectra</title><title>International journal of molecular sciences</title><addtitle>Int J Mol Sci</addtitle><description>Matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry (MS) has been used to identify microorganisms and predict antibiotic resistance. The preprocessing method for the MS spectrum is key to extracting critical information from complicated MS spectral data. Different preprocessing methods yield different data, and the optimal approach is unclear. In this study, we adopted an ensemble of multiple preprocessing methods--FlexAnalysis, MALDIquant, and continuous wavelet transform-based methods--to detect peaks and build machine learning classifiers, including logistic regressions, naïve Bayes classifiers, random forests, and a support vector machine. The aim was to identify antibiotic resistance in , , , and Group B (GBS) based on MALDI-TOF MS spectra collected from two branches of a referral tertiary medical center. The ensemble method was compared with the individual methods. Random forest models built with the data preprocessed by the ensemble method outperformed individual preprocessing methods and achieved the highest accuracy, with values of 84.37% ( ), 90.96% ( ), 78.54% ( ), and 70.12% (GBS) on independent testing datasets. Through feature selection, important peaks related to antibiotic resistance could be detected from integrated information. The prediction model can provide an opinion for clinicians. The discriminative peaks enabling better prediction performance can provide a reference for further investigation of the resistance mechanism.</description><subject>Accuracy</subject><subject>Acinetobacter baumannii - chemistry</subject><subject>Acinetobacter Infections</subject><subject>Algorithms</subject><subject>Anti-Bacterial Agents - pharmacology</subject><subject>Antibiotic resistance</subject><subject>Antibiotics</subject><subject>Bacteria</subject><subject>Bacterial infections</subject><subject>Bayes Theorem</subject><subject>Bayesian analysis</subject><subject>Classification</subject><subject>Continuous wavelet transform</subject><subject>Drug resistance</subject><subject>Feature selection</subject><subject>Health care facilities</subject><subject>Humans</subject><subject>Ions</subject><subject>Laboratories</subject><subject>Machine learning</subject><subject>MALDI-TOF MS</subject><subject>Mass spectrometry</subject><subject>Mass spectroscopy</subject><subject>Methods</subject><subject>Microorganisms</subject><subject>Open source software</subject><subject>Peptides</subject><subject>Prediction models</subject><subject>Preprocessing</subject><subject>Spectra</subject><subject>Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization - methods</subject><subject>Support vector machines</subject><subject>Wavelet transforms</subject><issn>1422-0067</issn><issn>1661-6596</issn><issn>1422-0067</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdUk2P0zAQtRCIXQo3zigSFw4EHNuJ7QtSWXahUqtdQTlbjj9SV0mctR0Qv4M_jEuXVZfTjMdv3nieHwAvK_gOYw7fu_0QEYEIcs4egfOKIFRC2NDHJ_kZeBbjHkKEUc2fgjPcNJTUFTkHv7f-pww6Fkul5iCTKVbajMlZp2Ryfiy8LZb53DqfnCq_muhikmMqbmTa-c6MsUi74Odul6MpLsdohrY3h7bN3Cc35fwmmCl4ZWJ0Y1dsTG7MAz_KaHSRJ2yW60-rcnt9VXybjEpBPgdPrOyjeXEXF-D71eX24ku5vv68uliuS0UoS2XLLbOVVpJxjHTOYcM5ooTiGirOLIEat1khTjCRvK51bTCiGrGGshZiiRdgdeTVXu7FFNwgwy_hpRN_Cz50Qoa8dW8Ep0hZjSlubEuUZUxqRFsMW9TUiss6c304ck1zOxitsoZB9g9IH96Mbic6_0Nw1tSQVpngzR1B8LeziUkMLirT93I0fo4C0Ybl72vyegvw-j_o3s9hzFIdUBQhDinLqLdHlAo-xmDs_WMqKA7OEafOyfBXpwvcg_9ZBf8B9ynAlA</recordid><startdate>20230105</startdate><enddate>20230105</enddate><creator>Chung, Chia-Ru</creator><creator>Wang, Hsin-Yao</creator><creator>Chou, Po-Han</creator><creator>Wu, Li-Ching</creator><creator>Lu, Jang-Jih</creator><creator>Horng, Jorng-Tzong</creator><creator>Lee, Tzong-Yi</creator><general>MDPI AG</general><general>MDPI</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-4548-7620</orcidid><orcidid>https://orcid.org/0000-0002-6323-4555</orcidid><orcidid>https://orcid.org/0000-0001-5581-6793</orcidid><orcidid>https://orcid.org/0000-0001-8475-7868</orcidid></search><sort><creationdate>20230105</creationdate><title>Towards Accurate Identification of Antibiotic-Resistant Pathogens through the Ensemble of Multiple Preprocessing Methods Based on MALDI-TOF Spectra</title><author>Chung, Chia-Ru ; Wang, Hsin-Yao ; Chou, Po-Han ; Wu, Li-Ching ; Lu, Jang-Jih ; Horng, Jorng-Tzong ; Lee, Tzong-Yi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c478t-b9f8f1dca8932df8f06992747350c98f40d3b3909434a955d5e327d28678b03a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Accuracy</topic><topic>Acinetobacter baumannii - chemistry</topic><topic>Acinetobacter Infections</topic><topic>Algorithms</topic><topic>Anti-Bacterial Agents - pharmacology</topic><topic>Antibiotic resistance</topic><topic>Antibiotics</topic><topic>Bacteria</topic><topic>Bacterial infections</topic><topic>Bayes Theorem</topic><topic>Bayesian analysis</topic><topic>Classification</topic><topic>Continuous wavelet transform</topic><topic>Drug resistance</topic><topic>Feature selection</topic><topic>Health care facilities</topic><topic>Humans</topic><topic>Ions</topic><topic>Laboratories</topic><topic>Machine learning</topic><topic>MALDI-TOF MS</topic><topic>Mass spectrometry</topic><topic>Mass spectroscopy</topic><topic>Methods</topic><topic>Microorganisms</topic><topic>Open source software</topic><topic>Peptides</topic><topic>Prediction models</topic><topic>Preprocessing</topic><topic>Spectra</topic><topic>Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization - methods</topic><topic>Support vector machines</topic><topic>Wavelet transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chung, Chia-Ru</creatorcontrib><creatorcontrib>Wang, Hsin-Yao</creatorcontrib><creatorcontrib>Chou, Po-Han</creatorcontrib><creatorcontrib>Wu, Li-Ching</creatorcontrib><creatorcontrib>Lu, Jang-Jih</creatorcontrib><creatorcontrib>Horng, Jorng-Tzong</creatorcontrib><creatorcontrib>Lee, Tzong-Yi</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>International journal of molecular sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chung, Chia-Ru</au><au>Wang, Hsin-Yao</au><au>Chou, Po-Han</au><au>Wu, Li-Ching</au><au>Lu, Jang-Jih</au><au>Horng, Jorng-Tzong</au><au>Lee, Tzong-Yi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Towards Accurate Identification of Antibiotic-Resistant Pathogens through the Ensemble of Multiple Preprocessing Methods Based on MALDI-TOF Spectra</atitle><jtitle>International journal of molecular sciences</jtitle><addtitle>Int J Mol Sci</addtitle><date>2023-01-05</date><risdate>2023</risdate><volume>24</volume><issue>2</issue><spage>998</spage><pages>998-</pages><issn>1422-0067</issn><issn>1661-6596</issn><eissn>1422-0067</eissn><abstract>Matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry (MS) has been used to identify microorganisms and predict antibiotic resistance. The preprocessing method for the MS spectrum is key to extracting critical information from complicated MS spectral data. Different preprocessing methods yield different data, and the optimal approach is unclear. In this study, we adopted an ensemble of multiple preprocessing methods--FlexAnalysis, MALDIquant, and continuous wavelet transform-based methods--to detect peaks and build machine learning classifiers, including logistic regressions, naïve Bayes classifiers, random forests, and a support vector machine. The aim was to identify antibiotic resistance in , , , and Group B (GBS) based on MALDI-TOF MS spectra collected from two branches of a referral tertiary medical center. The ensemble method was compared with the individual methods. Random forest models built with the data preprocessed by the ensemble method outperformed individual preprocessing methods and achieved the highest accuracy, with values of 84.37% ( ), 90.96% ( ), 78.54% ( ), and 70.12% (GBS) on independent testing datasets. Through feature selection, important peaks related to antibiotic resistance could be detected from integrated information. The prediction model can provide an opinion for clinicians. The discriminative peaks enabling better prediction performance can provide a reference for further investigation of the resistance mechanism.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>36674514</pmid><doi>10.3390/ijms24020998</doi><orcidid>https://orcid.org/0000-0002-4548-7620</orcidid><orcidid>https://orcid.org/0000-0002-6323-4555</orcidid><orcidid>https://orcid.org/0000-0001-5581-6793</orcidid><orcidid>https://orcid.org/0000-0001-8475-7868</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1422-0067
ispartof International journal of molecular sciences, 2023-01, Vol.24 (2), p.998
issn 1422-0067
1661-6596
1422-0067
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_972cfd3736fb4cf88ad27b30b265c9a5
source Publicly Available Content Database (Proquest) (PQ_SDU_P3); PubMed Central Free
subjects Accuracy
Acinetobacter baumannii - chemistry
Acinetobacter Infections
Algorithms
Anti-Bacterial Agents - pharmacology
Antibiotic resistance
Antibiotics
Bacteria
Bacterial infections
Bayes Theorem
Bayesian analysis
Classification
Continuous wavelet transform
Drug resistance
Feature selection
Health care facilities
Humans
Ions
Laboratories
Machine learning
MALDI-TOF MS
Mass spectrometry
Mass spectroscopy
Methods
Microorganisms
Open source software
Peptides
Prediction models
Preprocessing
Spectra
Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization - methods
Support vector machines
Wavelet transforms
title Towards Accurate Identification of Antibiotic-Resistant Pathogens through the Ensemble of Multiple Preprocessing Methods Based on MALDI-TOF Spectra
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T20%3A16%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Towards%20Accurate%20Identification%20of%20Antibiotic-Resistant%20Pathogens%20through%20the%20Ensemble%20of%20Multiple%20Preprocessing%20Methods%20Based%20on%20MALDI-TOF%20Spectra&rft.jtitle=International%20journal%20of%20molecular%20sciences&rft.au=Chung,%20Chia-Ru&rft.date=2023-01-05&rft.volume=24&rft.issue=2&rft.spage=998&rft.pages=998-&rft.issn=1422-0067&rft.eissn=1422-0067&rft_id=info:doi/10.3390/ijms24020998&rft_dat=%3Cproquest_doaj_%3E2767229078%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c478t-b9f8f1dca8932df8f06992747350c98f40d3b3909434a955d5e327d28678b03a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2767229078&rft_id=info:pmid/36674514&rfr_iscdi=true