Loading…
Towards Accurate Identification of Antibiotic-Resistant Pathogens through the Ensemble of Multiple Preprocessing Methods Based on MALDI-TOF Spectra
Matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry (MS) has been used to identify microorganisms and predict antibiotic resistance. The preprocessing method for the MS spectrum is key to extracting critical information from complicated MS spectral data. Differen...
Saved in:
Published in: | International journal of molecular sciences 2023-01, Vol.24 (2), p.998 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c478t-b9f8f1dca8932df8f06992747350c98f40d3b3909434a955d5e327d28678b03a3 |
---|---|
cites | cdi_FETCH-LOGICAL-c478t-b9f8f1dca8932df8f06992747350c98f40d3b3909434a955d5e327d28678b03a3 |
container_end_page | |
container_issue | 2 |
container_start_page | 998 |
container_title | International journal of molecular sciences |
container_volume | 24 |
creator | Chung, Chia-Ru Wang, Hsin-Yao Chou, Po-Han Wu, Li-Ching Lu, Jang-Jih Horng, Jorng-Tzong Lee, Tzong-Yi |
description | Matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry (MS) has been used to identify microorganisms and predict antibiotic resistance. The preprocessing method for the MS spectrum is key to extracting critical information from complicated MS spectral data. Different preprocessing methods yield different data, and the optimal approach is unclear. In this study, we adopted an ensemble of multiple preprocessing methods--FlexAnalysis, MALDIquant, and continuous wavelet transform-based methods--to detect peaks and build machine learning classifiers, including logistic regressions, naïve Bayes classifiers, random forests, and a support vector machine. The aim was to identify antibiotic resistance in
,
,
, and Group B
(GBS) based on MALDI-TOF MS spectra collected from two branches of a referral tertiary medical center. The ensemble method was compared with the individual methods. Random forest models built with the data preprocessed by the ensemble method outperformed individual preprocessing methods and achieved the highest accuracy, with values of 84.37% (
), 90.96% (
), 78.54% (
), and 70.12% (GBS) on independent testing datasets. Through feature selection, important peaks related to antibiotic resistance could be detected from integrated information. The prediction model can provide an opinion for clinicians. The discriminative peaks enabling better prediction performance can provide a reference for further investigation of the resistance mechanism. |
doi_str_mv | 10.3390/ijms24020998 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_972cfd3736fb4cf88ad27b30b265c9a5</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_972cfd3736fb4cf88ad27b30b265c9a5</doaj_id><sourcerecordid>2767229078</sourcerecordid><originalsourceid>FETCH-LOGICAL-c478t-b9f8f1dca8932df8f06992747350c98f40d3b3909434a955d5e327d28678b03a3</originalsourceid><addsrcrecordid>eNpdUk2P0zAQtRCIXQo3zigSFw4EHNuJ7QtSWXahUqtdQTlbjj9SV0mctR0Qv4M_jEuXVZfTjMdv3nieHwAvK_gOYw7fu_0QEYEIcs4egfOKIFRC2NDHJ_kZeBbjHkKEUc2fgjPcNJTUFTkHv7f-pww6Fkul5iCTKVbajMlZp2Ryfiy8LZb53DqfnCq_muhikmMqbmTa-c6MsUi74Odul6MpLsdohrY3h7bN3Cc35fwmmCl4ZWJ0Y1dsTG7MAz_KaHSRJ2yW60-rcnt9VXybjEpBPgdPrOyjeXEXF-D71eX24ku5vv68uliuS0UoS2XLLbOVVpJxjHTOYcM5ooTiGirOLIEat1khTjCRvK51bTCiGrGGshZiiRdgdeTVXu7FFNwgwy_hpRN_Cz50Qoa8dW8Ep0hZjSlubEuUZUxqRFsMW9TUiss6c304ck1zOxitsoZB9g9IH96Mbic6_0Nw1tSQVpngzR1B8LeziUkMLirT93I0fo4C0Ybl72vyegvw-j_o3s9hzFIdUBQhDinLqLdHlAo-xmDs_WMqKA7OEafOyfBXpwvcg_9ZBf8B9ynAlA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2767229078</pqid></control><display><type>article</type><title>Towards Accurate Identification of Antibiotic-Resistant Pathogens through the Ensemble of Multiple Preprocessing Methods Based on MALDI-TOF Spectra</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>PubMed Central Free</source><creator>Chung, Chia-Ru ; Wang, Hsin-Yao ; Chou, Po-Han ; Wu, Li-Ching ; Lu, Jang-Jih ; Horng, Jorng-Tzong ; Lee, Tzong-Yi</creator><creatorcontrib>Chung, Chia-Ru ; Wang, Hsin-Yao ; Chou, Po-Han ; Wu, Li-Ching ; Lu, Jang-Jih ; Horng, Jorng-Tzong ; Lee, Tzong-Yi</creatorcontrib><description>Matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry (MS) has been used to identify microorganisms and predict antibiotic resistance. The preprocessing method for the MS spectrum is key to extracting critical information from complicated MS spectral data. Different preprocessing methods yield different data, and the optimal approach is unclear. In this study, we adopted an ensemble of multiple preprocessing methods--FlexAnalysis, MALDIquant, and continuous wavelet transform-based methods--to detect peaks and build machine learning classifiers, including logistic regressions, naïve Bayes classifiers, random forests, and a support vector machine. The aim was to identify antibiotic resistance in
,
,
, and Group B
(GBS) based on MALDI-TOF MS spectra collected from two branches of a referral tertiary medical center. The ensemble method was compared with the individual methods. Random forest models built with the data preprocessed by the ensemble method outperformed individual preprocessing methods and achieved the highest accuracy, with values of 84.37% (
), 90.96% (
), 78.54% (
), and 70.12% (GBS) on independent testing datasets. Through feature selection, important peaks related to antibiotic resistance could be detected from integrated information. The prediction model can provide an opinion for clinicians. The discriminative peaks enabling better prediction performance can provide a reference for further investigation of the resistance mechanism.</description><identifier>ISSN: 1422-0067</identifier><identifier>ISSN: 1661-6596</identifier><identifier>EISSN: 1422-0067</identifier><identifier>DOI: 10.3390/ijms24020998</identifier><identifier>PMID: 36674514</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Accuracy ; Acinetobacter baumannii - chemistry ; Acinetobacter Infections ; Algorithms ; Anti-Bacterial Agents - pharmacology ; Antibiotic resistance ; Antibiotics ; Bacteria ; Bacterial infections ; Bayes Theorem ; Bayesian analysis ; Classification ; Continuous wavelet transform ; Drug resistance ; Feature selection ; Health care facilities ; Humans ; Ions ; Laboratories ; Machine learning ; MALDI-TOF MS ; Mass spectrometry ; Mass spectroscopy ; Methods ; Microorganisms ; Open source software ; Peptides ; Prediction models ; Preprocessing ; Spectra ; Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization - methods ; Support vector machines ; Wavelet transforms</subject><ispartof>International journal of molecular sciences, 2023-01, Vol.24 (2), p.998</ispartof><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2023 by the authors. 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c478t-b9f8f1dca8932df8f06992747350c98f40d3b3909434a955d5e327d28678b03a3</citedby><cites>FETCH-LOGICAL-c478t-b9f8f1dca8932df8f06992747350c98f40d3b3909434a955d5e327d28678b03a3</cites><orcidid>0000-0002-4548-7620 ; 0000-0002-6323-4555 ; 0000-0001-5581-6793 ; 0000-0001-8475-7868</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2767229078/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2767229078?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36674514$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chung, Chia-Ru</creatorcontrib><creatorcontrib>Wang, Hsin-Yao</creatorcontrib><creatorcontrib>Chou, Po-Han</creatorcontrib><creatorcontrib>Wu, Li-Ching</creatorcontrib><creatorcontrib>Lu, Jang-Jih</creatorcontrib><creatorcontrib>Horng, Jorng-Tzong</creatorcontrib><creatorcontrib>Lee, Tzong-Yi</creatorcontrib><title>Towards Accurate Identification of Antibiotic-Resistant Pathogens through the Ensemble of Multiple Preprocessing Methods Based on MALDI-TOF Spectra</title><title>International journal of molecular sciences</title><addtitle>Int J Mol Sci</addtitle><description>Matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry (MS) has been used to identify microorganisms and predict antibiotic resistance. The preprocessing method for the MS spectrum is key to extracting critical information from complicated MS spectral data. Different preprocessing methods yield different data, and the optimal approach is unclear. In this study, we adopted an ensemble of multiple preprocessing methods--FlexAnalysis, MALDIquant, and continuous wavelet transform-based methods--to detect peaks and build machine learning classifiers, including logistic regressions, naïve Bayes classifiers, random forests, and a support vector machine. The aim was to identify antibiotic resistance in
,
,
, and Group B
(GBS) based on MALDI-TOF MS spectra collected from two branches of a referral tertiary medical center. The ensemble method was compared with the individual methods. Random forest models built with the data preprocessed by the ensemble method outperformed individual preprocessing methods and achieved the highest accuracy, with values of 84.37% (
), 90.96% (
), 78.54% (
), and 70.12% (GBS) on independent testing datasets. Through feature selection, important peaks related to antibiotic resistance could be detected from integrated information. The prediction model can provide an opinion for clinicians. The discriminative peaks enabling better prediction performance can provide a reference for further investigation of the resistance mechanism.</description><subject>Accuracy</subject><subject>Acinetobacter baumannii - chemistry</subject><subject>Acinetobacter Infections</subject><subject>Algorithms</subject><subject>Anti-Bacterial Agents - pharmacology</subject><subject>Antibiotic resistance</subject><subject>Antibiotics</subject><subject>Bacteria</subject><subject>Bacterial infections</subject><subject>Bayes Theorem</subject><subject>Bayesian analysis</subject><subject>Classification</subject><subject>Continuous wavelet transform</subject><subject>Drug resistance</subject><subject>Feature selection</subject><subject>Health care facilities</subject><subject>Humans</subject><subject>Ions</subject><subject>Laboratories</subject><subject>Machine learning</subject><subject>MALDI-TOF MS</subject><subject>Mass spectrometry</subject><subject>Mass spectroscopy</subject><subject>Methods</subject><subject>Microorganisms</subject><subject>Open source software</subject><subject>Peptides</subject><subject>Prediction models</subject><subject>Preprocessing</subject><subject>Spectra</subject><subject>Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization - methods</subject><subject>Support vector machines</subject><subject>Wavelet transforms</subject><issn>1422-0067</issn><issn>1661-6596</issn><issn>1422-0067</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdUk2P0zAQtRCIXQo3zigSFw4EHNuJ7QtSWXahUqtdQTlbjj9SV0mctR0Qv4M_jEuXVZfTjMdv3nieHwAvK_gOYw7fu_0QEYEIcs4egfOKIFRC2NDHJ_kZeBbjHkKEUc2fgjPcNJTUFTkHv7f-pww6Fkul5iCTKVbajMlZp2Ryfiy8LZb53DqfnCq_muhikmMqbmTa-c6MsUi74Odul6MpLsdohrY3h7bN3Cc35fwmmCl4ZWJ0Y1dsTG7MAz_KaHSRJ2yW60-rcnt9VXybjEpBPgdPrOyjeXEXF-D71eX24ku5vv68uliuS0UoS2XLLbOVVpJxjHTOYcM5ooTiGirOLIEat1khTjCRvK51bTCiGrGGshZiiRdgdeTVXu7FFNwgwy_hpRN_Cz50Qoa8dW8Ep0hZjSlubEuUZUxqRFsMW9TUiss6c304ck1zOxitsoZB9g9IH96Mbic6_0Nw1tSQVpngzR1B8LeziUkMLirT93I0fo4C0Ybl72vyegvw-j_o3s9hzFIdUBQhDinLqLdHlAo-xmDs_WMqKA7OEafOyfBXpwvcg_9ZBf8B9ynAlA</recordid><startdate>20230105</startdate><enddate>20230105</enddate><creator>Chung, Chia-Ru</creator><creator>Wang, Hsin-Yao</creator><creator>Chou, Po-Han</creator><creator>Wu, Li-Ching</creator><creator>Lu, Jang-Jih</creator><creator>Horng, Jorng-Tzong</creator><creator>Lee, Tzong-Yi</creator><general>MDPI AG</general><general>MDPI</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-4548-7620</orcidid><orcidid>https://orcid.org/0000-0002-6323-4555</orcidid><orcidid>https://orcid.org/0000-0001-5581-6793</orcidid><orcidid>https://orcid.org/0000-0001-8475-7868</orcidid></search><sort><creationdate>20230105</creationdate><title>Towards Accurate Identification of Antibiotic-Resistant Pathogens through the Ensemble of Multiple Preprocessing Methods Based on MALDI-TOF Spectra</title><author>Chung, Chia-Ru ; Wang, Hsin-Yao ; Chou, Po-Han ; Wu, Li-Ching ; Lu, Jang-Jih ; Horng, Jorng-Tzong ; Lee, Tzong-Yi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c478t-b9f8f1dca8932df8f06992747350c98f40d3b3909434a955d5e327d28678b03a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Accuracy</topic><topic>Acinetobacter baumannii - chemistry</topic><topic>Acinetobacter Infections</topic><topic>Algorithms</topic><topic>Anti-Bacterial Agents - pharmacology</topic><topic>Antibiotic resistance</topic><topic>Antibiotics</topic><topic>Bacteria</topic><topic>Bacterial infections</topic><topic>Bayes Theorem</topic><topic>Bayesian analysis</topic><topic>Classification</topic><topic>Continuous wavelet transform</topic><topic>Drug resistance</topic><topic>Feature selection</topic><topic>Health care facilities</topic><topic>Humans</topic><topic>Ions</topic><topic>Laboratories</topic><topic>Machine learning</topic><topic>MALDI-TOF MS</topic><topic>Mass spectrometry</topic><topic>Mass spectroscopy</topic><topic>Methods</topic><topic>Microorganisms</topic><topic>Open source software</topic><topic>Peptides</topic><topic>Prediction models</topic><topic>Preprocessing</topic><topic>Spectra</topic><topic>Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization - methods</topic><topic>Support vector machines</topic><topic>Wavelet transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chung, Chia-Ru</creatorcontrib><creatorcontrib>Wang, Hsin-Yao</creatorcontrib><creatorcontrib>Chou, Po-Han</creatorcontrib><creatorcontrib>Wu, Li-Ching</creatorcontrib><creatorcontrib>Lu, Jang-Jih</creatorcontrib><creatorcontrib>Horng, Jorng-Tzong</creatorcontrib><creatorcontrib>Lee, Tzong-Yi</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>International journal of molecular sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chung, Chia-Ru</au><au>Wang, Hsin-Yao</au><au>Chou, Po-Han</au><au>Wu, Li-Ching</au><au>Lu, Jang-Jih</au><au>Horng, Jorng-Tzong</au><au>Lee, Tzong-Yi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Towards Accurate Identification of Antibiotic-Resistant Pathogens through the Ensemble of Multiple Preprocessing Methods Based on MALDI-TOF Spectra</atitle><jtitle>International journal of molecular sciences</jtitle><addtitle>Int J Mol Sci</addtitle><date>2023-01-05</date><risdate>2023</risdate><volume>24</volume><issue>2</issue><spage>998</spage><pages>998-</pages><issn>1422-0067</issn><issn>1661-6596</issn><eissn>1422-0067</eissn><abstract>Matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry (MS) has been used to identify microorganisms and predict antibiotic resistance. The preprocessing method for the MS spectrum is key to extracting critical information from complicated MS spectral data. Different preprocessing methods yield different data, and the optimal approach is unclear. In this study, we adopted an ensemble of multiple preprocessing methods--FlexAnalysis, MALDIquant, and continuous wavelet transform-based methods--to detect peaks and build machine learning classifiers, including logistic regressions, naïve Bayes classifiers, random forests, and a support vector machine. The aim was to identify antibiotic resistance in
,
,
, and Group B
(GBS) based on MALDI-TOF MS spectra collected from two branches of a referral tertiary medical center. The ensemble method was compared with the individual methods. Random forest models built with the data preprocessed by the ensemble method outperformed individual preprocessing methods and achieved the highest accuracy, with values of 84.37% (
), 90.96% (
), 78.54% (
), and 70.12% (GBS) on independent testing datasets. Through feature selection, important peaks related to antibiotic resistance could be detected from integrated information. The prediction model can provide an opinion for clinicians. The discriminative peaks enabling better prediction performance can provide a reference for further investigation of the resistance mechanism.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>36674514</pmid><doi>10.3390/ijms24020998</doi><orcidid>https://orcid.org/0000-0002-4548-7620</orcidid><orcidid>https://orcid.org/0000-0002-6323-4555</orcidid><orcidid>https://orcid.org/0000-0001-5581-6793</orcidid><orcidid>https://orcid.org/0000-0001-8475-7868</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1422-0067 |
ispartof | International journal of molecular sciences, 2023-01, Vol.24 (2), p.998 |
issn | 1422-0067 1661-6596 1422-0067 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_972cfd3736fb4cf88ad27b30b265c9a5 |
source | Publicly Available Content Database (Proquest) (PQ_SDU_P3); PubMed Central Free |
subjects | Accuracy Acinetobacter baumannii - chemistry Acinetobacter Infections Algorithms Anti-Bacterial Agents - pharmacology Antibiotic resistance Antibiotics Bacteria Bacterial infections Bayes Theorem Bayesian analysis Classification Continuous wavelet transform Drug resistance Feature selection Health care facilities Humans Ions Laboratories Machine learning MALDI-TOF MS Mass spectrometry Mass spectroscopy Methods Microorganisms Open source software Peptides Prediction models Preprocessing Spectra Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization - methods Support vector machines Wavelet transforms |
title | Towards Accurate Identification of Antibiotic-Resistant Pathogens through the Ensemble of Multiple Preprocessing Methods Based on MALDI-TOF Spectra |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T20%3A16%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Towards%20Accurate%20Identification%20of%20Antibiotic-Resistant%20Pathogens%20through%20the%20Ensemble%20of%20Multiple%20Preprocessing%20Methods%20Based%20on%20MALDI-TOF%20Spectra&rft.jtitle=International%20journal%20of%20molecular%20sciences&rft.au=Chung,%20Chia-Ru&rft.date=2023-01-05&rft.volume=24&rft.issue=2&rft.spage=998&rft.pages=998-&rft.issn=1422-0067&rft.eissn=1422-0067&rft_id=info:doi/10.3390/ijms24020998&rft_dat=%3Cproquest_doaj_%3E2767229078%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c478t-b9f8f1dca8932df8f06992747350c98f40d3b3909434a955d5e327d28678b03a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2767229078&rft_id=info:pmid/36674514&rfr_iscdi=true |